首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响   总被引:10,自引:0,他引:10  
通过2a田间定位试验,研究渭北旱塬地区夏闲期插播并翻压不同豆科绿肥(长武怀豆、大豆和绿豆)以及小麦生长季不同施氮量(0,108,135,162 kg/hm2)对麦田土壤肥力性状的影响,以期为提高旱地土壤质量提供理论依据.试验结果表明:(1)种植豆科绿肥能显著提高土壤有机质、活性有机质和全氮含量,增加土壤碳库管理指数(CPMI),对土壤速效钾含量没有显著影响;(2)绿豆还田量高于长武怀豆和大豆,然而土壤培肥效果逊于长武怀豆和大豆;(3)夏闲期种植绿肥明显消耗了土壤水分,导致绿肥翻压前、小麦播前直至收获后,0-200 cm土壤贮水量显著低于休闲处理,但耗水量与休闲没有明显差异,由于小麦产量显著增加,因此豆科绿肥显著提高了水分生产效率;(4)与不施氮相比,小麦生长季施用氮肥能显著增加土壤水分生产效率,却对土壤各肥力性状的影响均不显著.夏闲期种植并翻压豆科绿肥是旱地培肥土壤、提高水分生产效率的有效途径.  相似文献   

2.
One-season fallows with legumes such as Crotalaria grahamiana Wight & Arn. and phosphorus (P) fertilization have been suggested to improve crop yields in sub-Saharan Africa. Assessing the sustainability of these measures requires a sound understanding of soil processes, especially transformations of P which is often the main limiting nutrient. We compared plant production, nitrogen (N) and P balances and selected soil properties during 5.5 years in a field experiment with three crop rotations (continuous maize, maize-crotalaria and maize-natural fallow rotation) at two levels of P fertilization (0 and 50 kg P ha?1 yr?1, applied as triple superphosphate) on a Kandiudalfic Eutrudox in western Kenya. The maize yield forgone during growth of the crotalaria fallow was compensated by higher post-fallow yields, but the cumulative total maize yield was not significantly different from continuous maize. In all crop rotations, P fertilization doubled total maize yields, increased N removal by maize and remained without effect on amounts of recycled biomass. Crotalaria growth decreased in the course of the experiment due to pest problems. The highest levels of soil organic and microbial C, N and P were found in the maize-crotalaria fallow rotation. The increase in organic P was not accompanied by a change in resin-extractable P, while H2SO4-extractable inorganic P was depleted by up to 38 kg P ha?1 (1% of total P) in the 0–50 cm layer. Microbial P increased substantially when soil was supplied with C and N in a laboratory experiment, confirming field observations that the microbial biomass is limited by C and N rather than P availability. Maize-legume fallow rotations result in a shift towards organic and microbial nutrients and have to be complemented by balanced additions of inorganic fertilizers. Abbreviations: BNF – biological nitrogen fixation; COM – continuous maize; LR – long rainy season; MCF – maize-crotalaria fallow rotation; MNF – maize-natural fallow rotation; SR – short rainy season; TSP – triple superphosphate.  相似文献   

3.
The integration of multipurpose legumes into low-input tropical agricultural systems is needed because they are a nitrogen (N) input through symbiotic fixation. The drought-tolerant cover legume canavalia (Canavalia brasiliensis) has been introduced for use either as forage or as a green manure into the crop-livestock system of the Nicaraguan hillsides. To evaluate its impact on the subsequent maize crop, an in-depth study on N dynamics in the soil-plant system was conducted. Microplots were installed in a 6-year old field experiment with maize-canavalia rotation. Direct and indirect 15N-labelling techniques were used to determine N uptake by maize from canavalia residues and canavalia-fed cows?? manure compared to mineral fertilizer. Litter bags were used to determine the N release from canavalia residues. The incorporation of N from the amendment into different soil N pools (total N, mineral N, microbial biomass) was followed during the maize cropping season. Maize took up an average of 13.3 g?N?m?2, within which 1.0 g?N?m?2 was from canavalia residues and 2.6 g?N?m?2 was from mineral fertilizer, corresponding to an amendment N recovery of 12% and 32%, respectively. Recoveries in maize would probably be higher at a site with lower soil available N content. Most of the amendment N remained in the soil. Mineral N and microbial N were composed mainly of N derived from the soil. Combined total 15N recovery in maize and soil at harvest was highest for the canavalia residue treatment with 98% recovery, followed by the mineral fertilizer treatment with 83% recovery. Despite similar initial enrichment of soil microbial and mineral N pools, the indirect labelling technique failed to assess the N fertilizer value of mineral and organic amendments due to a high N mineralization from the soil organic matter.  相似文献   

4.
Our study tests the emerging paradigm that biochemical recalcitrance does not affect substantially long-term (50 years) SOC persistence. We analyzed the molecular composition of SOC in archived soils originating from four European long-term bare fallow experiments (Askov, Rothamsted, Versailles and Ultuna). The soils had been collected after various periods (up to 53 years) under bare fallow. With increasing duration of bare fallow without new organic inputs, the relative abundance of cutin- and suberin-derived compounds declined substantially, and the abundance of lignin-derived compounds was close to zero. Conversely, the relative abundance of plant-derived long-chain alkanes remained almost constant or increased during the bare fallow period. The relative abundance of N-containing compounds, considered to be abundant in SOC derived from microbial activity, increased consistently illustrating that microbial turnover of SOC continues even when plant inputs are stopped. The persistence of the different families of plant-derived compounds differed markedly over the scale of half a century, which may be ascribed to their contrasting chemical characteristics and recalcitrance, or to differences in their interactions with the soil mineral matrix, and likely some combination since chemical composition drives the degree of mineral association. Using soil from this unique set of long-term bare fallow experiments, we provide direct evidence that multi-decadal scale persistent SOC is enriched in microbe-derived compounds but also includes a substantial fraction of plant-derived compounds.  相似文献   

5.
曾昭阳  栾璐  薛敬荣  孙波  蒋瑀霁 《生态学报》2023,43(7):2938-2948
为明确不同施肥处理对土壤原生生物群落、微生物碳代谢活性的影响,以南方典型旱地红壤为研究对象,基于中国科学院鹰潭红壤生态实验站玉米单作系统有机培肥长期定位试验,选取不施肥(M0)、低量猪粪(M1)、高量猪粪(M2)、高量猪粪+石灰(M3)4个处理,利用高通量测序技术研究不同猪粪处理下红壤原生生物多样性、群落结构的变化,揭示原生生物与微生物互作对土壤微生物碳代谢活性和玉米产量的影响。结果表明:(1)长期施用猪粪处理下,土壤pH、有机质(SOM)、全氮(TN)、全磷(TP)、速效磷(AP)和速效钾(AK)的含量显著提高;(2)与M0处理相比,施肥处理显著提高了原生生物生物量和多样性,并且显著改变了其群落结构,其中土壤TP、pH、AP、TN、SOM和AK是原生生物群落结构变化的重要驱动因子;(3)施肥处理显著提高了土壤细菌和真菌生物量,增加了微生物碳代谢活性(Average well color development, AWCD);(4)土壤pH和AP通过影响原生生物多样性和群落结构,间接提高了微生物碳代谢活性和玉米产量。本研究结果为提升旱地红壤的生物多样性,保障土壤健康和维持生态系统服务功...  相似文献   

6.
A buried bag incubation technique was proposed to monitor N release from soil and decomposing green manure. The technique would facilitate not only the screening of legumes as sources of N but also measurement of the N supplying capacity of soils. Several tropical legumes were incorporated into field plots followed either by maize (Zea mays L.) or by bare fallow. Soil samples from the plow layer containing the incorporated green manure were placed in low density polyethylene bags and buried within the plow layer under the maize crop for in situ incubation. Periodic withdrawal of the bags was accompanied by fallow soil profile sampling. Above ground N accumulation by maize was equally well correlated to N release measured by either method although the bag technique required much less labor. Supplemental experiments suggested that N accumulation in the bags was reduced due to inadequate O2 diffusion but only when O2 demand was high and soil water potential was high. The results show that in situ bag incubation alone or together with fallow soil sampling can be used to estimate the N supplying potential of soil and leguminous residues.  相似文献   

7.
The impacts of crop rotation and inorganic nitrogen fertilization on soil microbial biomass C (SMBC) and N (SMBN) and water-soluble organic C (WSOC) were studied in a Guinea savanna Alfisol of Nigeria. In 2001, fields of grain legumes (soybean and cowpea), herbaceous legume (Centrosema pascuorum) and a natural fallow were established. In 2002, maize was planted with N fertilizer rates of 0, 20, 40 and 60 kg N ha−1 in a split-plot arrangement fitted to a randomized complete block design with legumes and fallow as main plots and N fertilizer levels as subplots. Surface soil samples were taken at 4 weeks after planting and tasselling stage of the maize. Inorganic N fertilization had no significant (P>0.05) effect on SMBC, SMBN and WSOC, while crop rotation significantly (P<0.0001) affected both SMBC and WSOC. These results demonstrate that crop rotation do not necessarily influence the gross soil microbial biomass, but may affect physiologically distinct subcomponent of the microbial biomass. The soils under the various rotations had a predominance of fungi community as indicated by their wide biomass C/N ratio ranging from 9.2 to 20.9 suggesting fungi to be mainly responsible for decomposition in these soils. Soil microbial biomass and WSOC showed significant (P<0.05) correlation with both soil pH and organic carbon but no relationship with total N. Based on these results, it appears that the soil pH and organic carbon determined the flux of the soil microbial biomass and amount of WSOC in these soils.  相似文献   

8.
Mechanisms leading to high mean residence times of organic matter in subsoil horizons are poorly understood. In lower parts of the soil profile root material contributes greatly to soil organic matter (SOM). The objective of this study was to elucidate the decomposition dynamics of root-derived C and N in different soil depths during a 3 year field experiment and to examine the importance of different protection mechanisms as well as abiotic factors for the decomposition dynamics. Additionally, we assessed the effect of root litter addition on native SOM. Our conceptual approach included the exposure of litterbags with 13C and 15N labeled wheat root material mixed to loamy agricultural soil at three different soil depths (30, 60 and 90 cm). During the incubation period, we monitored soil temperature, humidity and the incorporation of root derived C and N into the soil microbial biomass and physical SOM fractions. Our results showed that abiotic decay conditions were better in subsurface horizons compared to the topsoil. Root litter addition significantly increased the size of microbial biomass in all three soil horizons. In the topsoil, root-derived C decomposition was significantly higher in the first 6 months of incubation compared to subsoil horizons. In 60 and 90 cm depths, a lag phase with development of soil microbial biomass seemed to be prevailing before decomposition was activated. For root-derived N, similar decomposition kinetics could be observed in top- and subsoil horizons. Despite of higher SOM contents, better soil structure and higher microbial activity in the topsoil horizon compared to subsoil horizons, the amounts of root-derived C and N remaining after 3 years were similar for all three depths. Most of the root-derived C and N was present as organo-mineral complexes or occluded in soil aggregates (oPOM), illustrating similar importance of these two protection mechanisms in all three soil depths. Addition of fresh root litter caused small losses of native soil C whereas native N was retained. We conclude that despite of similar SOM protection mechanisms, there are distinct differences in decomposition dynamics of root litter between top- and subsoil horizons. In the long run, the better abiotic decay conditions prevailing in subsoil horizons may compensate for their poorer physico-chemical characteristics.  相似文献   

9.
The aim of the present study was to assess the effects of different organic and inorganic fertilizers on the functional diversity of soil microbial community under a vegetable production system. The Biolog® Eco-plate technique and indices, such as average well-colour development (AWCD), McIntosh and Shannon diversity were employed to study the diversity of soil microorganisms. The AWCD, i.e. overall utilization of carbon sources, suggested that different organic treatments had a significant impact on the metabolic activity of soil microorganisms. After 120 h, the highest AWCD values were observed in poultry manure (2.5 t·ha?1) + vermicompost (3.5 t·ha?1) (0.63) and farm yard manure (FYM) (10 t·ha?1) + vermicompost (3.5 t·ha?1) (0.61). After 72 h, the highest value of the McIntosh diversity index was recorded in poultry manure (2.5 t·ha?1) + vermicompost (3.5 t·ha?1) (3.87), followed by poultry manure (2.5 t·ha?1) + vermicompost (3.5 t·ha?1) + biofertilizers (Azotobacter 500 g·ha?1 applied as seed treatment) (3.12). In the case of the Shannon diversity index, the highest values were noticed in organic treatments; however, there was no significant differences between organic and inorganic treatments. Biplot analysis showed a clear differentiation of organic treatments from the inorganic control. The amino acids, phenolics and polymer utilizing microorganisms were dominant in organic treatments. Inorganic control recorded the lowest values of the microbial diversity indices. Through this study, we have identified the best combination of organic nutrients, i.e. poultry manure (2.5 t·ha?1) + vermicompost (3.5 t·ha?1) for the stimulation of metabolically active soil microbial communities.  相似文献   

10.
With climate change, forests are expected to receive increased inputs of carbon (C) and nitrogen (N) but it is unclear how this will modify forest C cycling and storage at the molecular-level. To investigate the response of forest soil organic matter (SOM) to changes in soil inputs, a study area was established in a Michigan hardwood forest as part of the Detrital Input and Removal Treatments (DIRT) network. Experimental treatments were comprised of both exclusions of detrital inputs (No Litter, No Roots, No Inputs) and additions of C and N (Double Litter, N-Addition, Double Litter?+?N, Wood). After 10 years of treatment, the soils were characterized using elemental analysis, molecular biomarker techniques, nuclear magnetic resonance spectroscopy, and microbial biomass C measurements. Although manipulation of detrital inputs did not significantly change the soil C and N content after 10 years, alterations in the cycling and distribution of SOM components were observed. Root exclusion enhanced SOM degradation, while doubling litter favoured the degradation of more labile forms of soil C such as unsaturated n-alkanoic acids and simple sugars. N-Addition and Double Litter?+?N increased the concentrations of extractable biomarkers, including aliphatic and cyclic lipids and compounds derived from cutin, suberin, and lignin. Microbial biomass C also varied with experimental litter input manipulations and N addition, and these data were consistent with the observed changes in SOM composition. Overall, the observed shifts in SOM chemistry after 10 years of manipulating ecosystem inputs highlight the sensitivity of natural systems to changes in amounts of C and N inputs from roots and litter, and N inputs from external sources.  相似文献   

11.
This study examined the effects of molybdenum (Mo) and boron (B) on the rhizosphere microorganisms and the soil enzyme activities of soybean. The soybeans were treated with seven different Mo and B supplements (control: without Mo and B) Mo1 (0.0185 g kg?1), B1 (0.08 g kg?1), Mo1 + B1 (0.0185 + 0.08 g kg?1), Mo2 (0.185 g kg?1), B2 (0.3 g kg?1) and Mo2 + B2 (0.185 + 0.3 g kg?1) throughout the plants’ four growth stages. The results showed that Mo, B, and combined Mo and B treatments increased the soil microbial populations, stimulated the rhizosphere metabolisms, and improved the soil enzyme activities. These stimulatory effects varied in intensity among the treatment groups. The Mo and B combination treatments were more beneficial for the soybean rhizosphere soil than that of Mo-only or the B-only treatments, which suggests that the two elements have complementary functions in the biological processes of the soybean rhizosphere.  相似文献   

12.
Hydrogen (H2) is a by-product of the symbiotic nitrogen fixation (N2 fixation) between legumes and root-nodule bacteria (rhizobia). Some rhizobial strains have an uptake hydrogenase enzyme (commonly referred to as Hup+) that recycles H2 within the nodules. Other rhizobia, described as Hup?, do not have the enzyme and the H2 produced diffuses from the nodules into the soil where it is consumed by microorganisms. The effect of this phenomenon on the soil biota and on the soil itself, and consequent stimulation of plant growth, has been demonstrated previously. Soybeans [Glycine max (L.) Merr.] cv. Leichhardt, inoculated with either a Hup+ strain (CB1809) or one of two Hup? strains (USDA442 or USDA16) of Bradyrhizobium japonicum and uninoculated soybeans, plus a non-legume control [capsicum (Capsicum annuum L.)] were grown in the field at Ayr, North Queensland, Australia. The objectives were to examine (1) relationships between N2 fixation and H2 emission, and (2) the influence H2-induced changes in soil might have during the legume phase and/or on the performance of a following crop. Strains CB1809 and USDA442 were highly effective in N2 fixation (“good” fixers); USDA16 was partly effective (“poor” fixer). The soil had a large but non-uniformly distributed naturalised population of B. japonicum and most uninoculated control plants formed nodules that fixed some N2. These naturalised strains were classified as “poor fixers” of N2 and were Hup+. H2 emissions from nodules were assessed for all treatments when the soybean crop was 62 days old. Other parameters of symbiotic N2 fixation and plant productivity were measured when the crop was 62 and 96 days old and at crop maturity. Immediately after final harvest, the land was sown to a crop of maize (Zea mays L.) in order to determine the consequences of H2 emission from the soybean crop on maize growth. It was estimated that soybeans inoculated with USDA442, the highly effective Hup strain of B. japonicum, fixed 117 kg shoot N/ha (or about 195 kg total N/ha if the fixed N associated with roots and nodules was taken into account), and contributed about 215,000 l H2 gas per hectare to the ecosystem over the life of the crop. The volume of H2 evolved from soybeans nodulated by the Hup+ strain CB1809 was only 6% of that emitted by the USDA442 treatment, but there was no indication that soybean inoculated with USDA442 benefited from the additional H2 input. The shoot biomass, grain yield, and amounts of N fixed (105 kg shoot N/ha, 175 kg total N/ha) by the CB1809 treatment were little less than for USDA442 plants. Three days after the soybean crop was harvested, the plots were over-sown with maize along the same row lines in which the soybeans had grown. This procedure exposed the maize roots to whatever influence soybean H2 emission might have had on the soil and/or the soil microflora immediately surrounding soybean nodules. The evidence for a positive effect of soybean H2 emission on maize production was equivocal. While the consistent differences between those pre-treatments that emitted H2 and those that did not indicated a trend, only one difference (out of the 12 parameters of maize productivity that were measured) was statistically significant at P?<?0.05. The findings need substantiation by further investigation.  相似文献   

13.
In 1985, 1986 and 1988, maize (Zea mays L.) was monocropped or intercropped with nodulating or nonnodulating soybean (Glycine max [L.] Merr.). In addition, nodulating soybean and nonnodulating soybean were each monocropped and grown as a mixture. In 1985 and 1986, treatments were grown at 0 and 60 kg N ha–1 and in 1988, the treatments were grown without N fertilizer, on N-depeted soil and on non-N-depleted soil. 15N enriched N was applied to soil in all the aforementioned treatments to test for N transfer from nodulating soybean to non-N2-fixing crops by the 15N dilution method.The 15N dilution method did not show the occurrence of N transfer in 1985 and 1986, but the N sparing effect was evident from the total N uptake of nonnodulating soybean, dwarf maize and tall maize, in 1986. In 1988, maize and nonnodulating soybean seed yields and seed N yields were higher on non-N-depleted soil than on N-depleted soil. On N-depleted soil, the 15N dilution method indicated N transfer from nodulating soybean to maize and to nonndulating soybean. At a population ratio of 67% nodulating soybean to 33% nonnodulating soybean, N transfer was also seen on non-N-depleted soil in 1988.  相似文献   

14.
The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils.  相似文献   

15.

Aims

Understanding the effects of long-term crop management on soil organic matter (SOM) is necessary to improve the soil quality and sustainability of agroecosystems.

Method

The present 7-year long-term field experiment was conducted to evaluate the effect of integrated management systems and N fertilization on SOM fractions and carbon management index (CMI). Two integrated soil-crop system management (ISSM-1 and ISSM-2, combined with improved cultivation pattern, water management and no-tillage) were compared with a traditional farming system at three nitrogen (N) fertilization rates (0, 150 and 225 kg N ha?1).

Results

Management systems had greater effects on SOM and its fractions than did N fertilization. Compared with traditional farming practice, the integrated management systems increased soil organic carbon (SOC) by 13 % and total nitrogen (TN) by 10 % (averaged over N levels) after 7 years. Integrated management systems were more effective in increasing labile SOM fractions and CMI as compared to traditional farming practice. SOC, TN and dissolved organic matter in nitrogen increased with N fertilization rates. Nonetheless, N addition decreased other labile fractions: particulate organic matter, dissolved organic matter in carbon, microbial biomass nitrogen and potassium permanganate-oxidizable carbon.

Conclusions

We conclude that integrated management systems increased total SOM, labile fractions and CMI, effectively improved soil quality in rice-rapeseed rotations. Appropriate N fertilization (N150) resulted in higher SOC and TN. Though N application increased dissolved organic matter in nitrogen, it was prone to decrease most of the other labile SOM fractions, especially under higher N rate (N250), implying the decline of SOM quality.  相似文献   

16.
The lack of understanding of nitrate dynamics in soil profiles of semiarid regions hampers the assessment of the environmental risks associated with nitrate. A long-term field experiment established in the Loess Plateau of Northwest China in 1984 was used to investigate the seasonal dynamics of water and nitrate contents in the soil profile (0–300 cm) under bare fallow and continuous winter wheat (Triticum aestivum L.) with various fertilizer treatments. For treatments without mineral N input (i.e., no fertilizer, farmyard manure alone, and with P fertilizer), the amount of nitrate accumulated in the soil profile (52–120 kg N ha?1, the average for June, August, February and April) was significantly lower than that (292 kg N ha?1) accumulated in the bare fallow treatment. A large amount of nitrate (1,065 kg N ha?1) was found accumulated in the soil profile with the treatment applied with mineral N at a rate of 120 kg N ha?1 year?1 for 17 years (1984–2001) and this nitrate moved downward during the wet season (from August to February). Clearly, the amount of nitrate accumulated in the soil profiles, and its tendency of downward movement, appears to potentially be an environmental risk as it may reach groundwater. Fertilization as mineral N fertilizers coupled with FYM or P resulted in 50–70% less nitrate accumulation in the soil profiles than that using mineral N fertilizer alone, and therefore the environmental risk was reduced. It is proposed that a “break point” of nitrate distribution existed in the soil profiles, providing an indication of soil depth to which nitrate can transfer.  相似文献   

17.

Introduction

Root-mediated changes in soil organic matter (SOM) decomposition, termed rhizosphere priming effects (RPE), play crucial roles in the global carbon (C) cycle, but their mechanisms and field relevance remain ambiguous. We hypothesize that nitrogen (N) shortages may intensify SOM decomposition in the rhizosphere because of increase of fine roots and rhizodeposition.

Methods

RPE and their dependence on N-fertilization were studied using a C3-to-C4 vegetation change. N-fertilized and unfertilized soil cores, with and without maize, were incubated in the field for 50 days. Soil CO2 efflux was measured, partitioned for SOM- and root-derived CO2, and RPE was calculated. Plant biomass, microbial biomass C (MBC) and N (MBN), and enzyme activities (β-1,4-glucosidase; N-acetylglucosaminidase; L-leucine aminopeptidase) were analyzed.

Results

Roots enhanced SOM mineralization by 35 % and 126 % with and without N, respectively. This was accompanied by higher specific root-derived CO2 in unfertilized soils. MBC, MBN and enzyme activities increased in planted soils, indicating microbial activation, causing positive RPE. N-fertilization had minor effects on MBC and MBN, but it reduced β-1,4-glucosidase and L-leucine aminopeptidase activities under maize through lower root-exudation. In contrast, N-acetylglucosaminidase activity increased with N-fertilization in planted and unplanted soils.

Conclusions

This study showed the field relevance of RPE and confirmed that, despite higher root biomass, N availability reduces RPE by lowering root and microbial activity.
  相似文献   

18.
长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响   总被引:36,自引:0,他引:36  
以小麦-玉米轮作长期肥料定位试验为平台,探讨不同养分管理对玉米生育期塿土微生物量碳、氮和酶活性动态变化的影响。试验包括6个处理,分别为不施肥(CK)、单施氮肥(N)、氮磷配合(NP)、氮磷钾配合(NPK)、NPK+秸秆(SNPK)以及有机肥+NPK(MNPK)。结果表明玉米生育期土壤微生物量碳、氮变化显著。不同施肥管理下土壤微生物量碳、氮的高低显著性分别为MNPK>SNPK、NP、NPK>N、CK。玉米生育期内土壤酶活性也变化显著,蔗糖酶、脲酶和纤维素酶在玉米抽雄期达到活性高峰,而磷酸酶在玉米拔节期出现活性高峰。不同施肥管理对土壤酶活性的影响总体表现为MNPK处理最高,其次为SNPK处理,再次为NPK和NP处理,N和CK处理最低。不同施肥处理间土壤微生物量碳、氮以及酶活性与土壤有机碳、全氮、速效磷水平密切相关。塿土长期施用氮磷或氮磷钾化肥可以提高土壤微生物量碳、氮以及酶活性。一季作物秸秆还田配合氮磷钾化肥与氮磷钾相比有提高土壤微生物量碳、氮以及酶活性的趋势。在等氮量下,有机肥配合化肥与其他施肥模式相比,均显著提升土壤化学肥力因素、微生物量碳氮和酶活性。因此,塿土上建议进行有机无机肥配合以提高土壤肥力,保持土壤生物健康。  相似文献   

19.
There is a strong trend toward reforestation of abandoned grasslands in alpine regions which may impact the carbon balance of alpine ecosystems. Here, we studied the effects of afforestation with Norway spruce (Picea abies L.) on an extensively grazed subalpine pasture in Switzerland on soil organic carbon (SOC) cycling and storage. Along a 120-year long chronosequence with spruce stands of 25, 30, 40, 45, and >120 years and adjacent pastures, we measured tree biomass, SOC stocks down to the bedrock, natural 13C abundances, and litter quality. To unravel controls on SOC cycling, we have monitored microclimatic conditions and quantified SOC decomposability under standardized conditions as well as soil respiration in situ. Stocks of SOC were only moderately affected by the afforestation: in the mineral soil, SOC stocks transiently decreased after tree establishment, reaching a minimum 40–45 years after afforestation (?25 %) and increased thereafter. Soils of the mature spruce forest stored the largest amount of SOC, 13 % more than the pasture soils, mainly due to the accumulation of an organic layer (23 t C ha?1). By comparison, C accumulated in the tree biomass exceeded the SOC pool by a factor of three in the old forest. In contrast to the small impact on C storage, afforestation strongly influenced the composition and quality of the soil organic matter (SOM). With increasing stand age, δ13C values of the SOM became consistently more positive, which can be interpreted as a gradual replacement of grass- by spruce-derived C. Fine roots of spruce were enriched in 13C, in lignin and had a higher C/N ratio in comparison to grass roots. As a consequence, SOM quality as indicated by the lower fraction of readily decomposable (labile) SOM and higher C:N ratios declined after the land-use change. Furthermore, spruce plantation induced a less favorable microclimate for microbial activity with the average soil temperature during the growing season being 5 °C lower in the spruce stands than in the pasture. In situ soil respiration was approximately 50 % lower after the land use conversion, which we primarily attribute to the colder conditions and the lower SOM quality, but also to drier soils (?25 %) and to a decreased fine root biomass (?40 %). In summary, afforestation on subalpine pastures only moderately affected SOC storage as compared to the large C sink in tree biomass. In contrast, SOC cycling rates strongly decreased as a result of a less favorable microclimate for decomposition of SOM, a lower C input by roots, and a lower litter quality.  相似文献   

20.
Winter cover crops can affect N nutrition of the following maize crop. Although legumes have been recommend for maize rotations, in tropical areas grasses may be more interesting because they provide a longer protection of soil surface. Legumes can add N to the system and grasses can compete with maize for the available nutrient. An experiment was conducted in Botucatu, São Paulo State, Brazil, to study N dynamics in the soil surface straw-maize system as affected by N fertilization management and species included in the no-till rotation. Treatments were fallow, black oat (Avena strigosa), pearl millet (Pennisetum glaucum), white lupins (Lupinus albus), black oat fertilized with N. and pearl millet fertilized with N. Maize was grown afterwards in the same plots, receiving 0.0, 60.0 and 120.0 kg ha?1 of N sidedressed 30 days after plant emergence. Soil, straw and maize samples were taken periodically. The highest corn yields were observed when it was cropped after pearl millet fertilized with N. Nitrogen side dressed application up to 120 kg ha?1 was not able to avoid corn yield decrease caused by black oat. Grasses can be recommended in maize rotations in tropical areas, provided they receive nitrogen fertilizer and show no allelopathy. Due to its higher C/N ratio and dry matter yield they are better than legumes, protecting the soil surface for a longer period. Pearl millet is particularly interesting because it enhances N use efficiency by the following maize crop. For a better N availability/demand synchronism, the cover crops should be desiccated right before maize planting  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号