首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker’s yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80 % similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS–SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.  相似文献   

3.
Microbial cells can enter a state of anhydrobiosis under desiccating conditions. One of the main determinants of viability during dehydration-rehydration cycles is structural integrity of the plasma membrane. Whereas much is known about phase transitions of the lipid bilayer, there is a paucity of information on changes in activity of plasma membrane proteins during dehydration-rehydration events. We selected the α-glucoside transporter Agt1 to gain insights into stress mechanisms/responses and ecophysiology during anhydrobiosis. As intracellular water content of S. cerevisiae strain 14 (a strain with moderate tolerance to dehydration-rehydration) was reduced to 1.5 g water/g dry weight, the activity of the Agt1 transporter decreased by 10–15 %. This indicates that functionality of this trans-membrane and relatively hydrophobic protein depends on water. Notably, however, levels of cell viability were retained. Prior incubation in the stress protectant xylitol increased stability of the plasma membrane but not Agt1. Studies were carried out using a comparator yeast which was highly resistant to dehydration-rehydration (S. cerevisiae strain 77). By contrast to S. cerevisiae strain 14, there was no significant reduction of Agt1 activity in S. cerevisiae strain 77 cells. These findings have implications for the ecophysiology of S. cerevisiae strains in natural and industrial systems.  相似文献   

4.
5.
6.
Lipid production by Saccharomyces cerevisiae was improved by overexpression of the yeast diacylglycerol acyltransferase Dga1p lacking the N-terminal 29 amino acids (Dga1?Np), which was previously found to be an active form in the ?snf2 mutant. Overexpression of Dga1?Np in the ?snf2 mutant, however, did not increase lipid content as expected, which prompted us to search for a more suitable strain in which to study the role of Dga1?Np in lipid accumulation. We found that the overexpression of Dga1?Np in the ?dga1 mutant effectively increased the lipid content up to about 45 % in the medium containing 10 % glucose. The high lipid content of the transformant was dependent on glucose concentration, nitrogen limitation, and active leucine biosynthesis. To better understand the effect of dga1 disruption on the ability of Dga1?Np to stimulate lipid accumulation, the ?dga1-1 mutant, in which the 3′-terminal 36 bp of the dga1 open reading frame (ORF) remained, and the ?dga1-2 mutant, in which the 3′-terminal 36 bp were also deleted, were prepared with URA3 disruption cassettes. Surprisingly, the overexpression of Dga1?Np in the ?dga1-1 mutant had a lower lipid content than the original ?dga1 mutant, whereas overexpression in the ?dga1-2 mutant led to a high lipid content of about 45 %. These results indicated that deletion of the 3′ terminal region of the dga1 ORF, rather than abrogation of genomic Dga1p expression, was crucial for the effect of Dga1?Np on lipid accumulation. To investigate whether dga1 disruption affected gene expression adjacent to DGA1, we found that the overexpression of Esa1p together with Dga1?Np in the ?dga1 mutant reverted the lipid content to the level of the wild-type strain overexpressing Dga1?Np. In addition, RT-qPCR analysis revealed that ESA1 mRNA expression in the ?dga1 mutant was decreased compared to the wild-type strain at the early stages of culture, suggesting that lowered Esa1p expression is involved in the effect of dga1 disruption on Dga1?Np-dependent lipid accumulation. These results provide a new strategy to engineer S. cerevisiae for optimal lipid production.  相似文献   

7.
The cost-effective production of bioethanol from lignocellulose requires the complete conversion of plant biomass, which contains up to 30 % mannan. To ensure utilisation of galactomannan during consolidated bioprocessing, heterologous production of mannan-degrading enzymes in fungal hosts was explored. The Aspergillus aculeatus endo-β-mannanase (Man1) and Talaromyces emersonii α-galactosidase (Agal) genes were expressed in Saccharomyces cerevisiae Y294, and the Aspergillus niger β-mannosidase (cMndA) and synthetic Cellvibrio mixtus β-mannosidase (Man5A) genes in A. niger. Maximum enzyme activity for Man1 (374 nkat ml?1, pH 5.47), Agal (135 nkat ml?1, pH 2.37), cMndA (12 nkat ml?1, pH 3.40) and Man5A (8 nkat ml?1, pH 3.40) was observed between 60 and 70 °C. Co-expression of the Man1 and Agal genes in S. cerevisiae Y294[Agal-Man1] reduced the extracellular activity relative to individual expression of the respective genes. However, the combined action of crude Man1, Agal and Man5A enzyme preparations significantly decreased the viscosity of galactomannan in locust bean gum, confirming hydrolysis thereof. Furthermore, when complemented with exogenous Man5A, S. cerevisiae Y294[Agal-Man1] produced 56 % of the theoretical ethanol yield, corresponding to a 66 % carbohydrate conversion, on 5 g l?1 mannose and 10 g l?1 locust bean gum.  相似文献   

8.
9.
Carboxypeptidase Y (CPY) is a yeast vacuolar protease with useful applications including C-terminal sequencing of peptides and terminal modification of target proteins. To overexpress CPY with the pro-sequence (proCPY) encoded by the Saccharomyces cerevisiae PRC1 gene in recombinant S. cerevisiae, the proCPY gene was combined with the gene coding for a signal sequence of S. cerevisiae mating factor α (MFα), invertase (SUC2), or Kluyveromyces marxianus inulinase (INU1). Among the three constructs, the MFα signal sequence gave the best specific activity of extracellular CPY. To enhance the CPY expression level, folding accessory proteins of Kar2p, Pdi1p and Ero1p located in the S. cerevisiae endoplasmic reticulum were expressed individually and combinatorially. A single expression of Kar2p led to a 28 % enhancement in extracellular CPY activity, relative to the control strain of S. cerevisiae CEN.PK2-1D/p426Gal1-MFαCPY. Coexpression of Kar2p, Pdi1p and Ero1p gave a synergistic effect on CPY expression, of which activity was 1.7 times higher than that of the control strain. This work showed that engineering of signal sequences and protein-folding proteins would be helpful to overexpress yeast proteins of interest.  相似文献   

10.
The oleaginous yeast Rhodotorula glutinis has been known to be a potential feedstock for lipid production. In the present study, we investigated the enhancement of expression of malic enzyme (ME; NADP+ dependent; EC 1.1.1.40) from Mucor circinelloides as a strategy to improve lipid content inside the yeast cells. The 26S rDNA and 5.8S rDNA gene fragments isolated from Rhodotorula glutinis were used for homologous integration of ME gene into R. glutinis chromosome under the control of the constitutively highly expressed gene phosphoglycerate kinase 1 to achieve stable expression. We demonstrated that by increasing the expression of the foreign ME gene in R. glutinis, we successfully improved the lipid content by more than twofold. At the end of lipid accumulation phrase (96 h) in the transformants, activity of ME was increased by twofold and lipid content of the yeast cells was increased from 18.74 % of the biomass to 39.35 %. Simultaneously, there were no significant differences in fatty acid profiles between the wild-type strain and the recombinant strain. Over 94 % of total fatty acids were C16:0, C18:0, C16:1, C18:1, and C18:2. Our results indicated that heterologous expression of NADP+-dependent ME involved in fatty acid biosynthesis indeed increased the lipid accumulation in the oleaginous yeast R. glutinis.  相似文献   

11.
12.
This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.  相似文献   

13.
Starter cultures of Candida tropicalis and Saccharomyces cerevisiae isolated from tchapalo were tested in pure culture and co-culture of four ratios [2:1, 25:4, 1:4, 2:3 (cells/cells)] for their ability to ferment sorghum wort to produce tchapalo. All the starters showed means growth rate between 0.043 and 0.101 h?1. Only C. tropicalis in pure culture showed growth rate lower than that of S. cerevisiae in single culture. During fermentation, according to total soluble solids depletion, yeast starters could be grouped in four different profiles. But in the beer produced, total soluble solids contents were statistically identical. The lowest values were obtained with co-culture C. tropicalis + S. cerevisiae in the ratios of 2:1 and 2:3. Starter cultures with large ratio of C. tropicalis produced a higher organic acids and 2-butanone than S. cerevisiae in pure culture. However, co-culture C. tropicalis + S. cerevisiae (2:1) was the alone starter which produced higher ethanol than S. cerevisiae in pure culture. The beers produced with C. tropicalis + S. cerevisiae (25:4), C. tropicalis + S. cerevisiae (1:4) and C. tropicalis were widely different from those produced with the others starter cultures.  相似文献   

14.
A yeast strain MJ2 that was found to produce a higher amount of γ-aminobutyric acid (GABA) was isolated from the surface of kiwi. Phylogenetic analysis based on the ITS sequence and morphological, biochemical studies indicated that it may belong to Saccharomyces cerevisiae. Under optimum conditions in Czapek’s broth medium with 0.5 % monosodium glutamate, it produced GABA at a concentration of 5.823 g/L after 48 h. A full-length glutamate decarboxylase gene (Scgad) was cloned by PCR amplification. The open reading frame (ORF) of the Scgad gene was composed of 1,755 nucleotides and encoded a protein (585 amino acids) with a predicted molecular weight of 65.897 kDa. The deduced amino acids sequence of Scgad shows 100 %, 65 % and 62 % similarity with S. cerevisiae, Candida glabrata and Kluyveromyces lactis GAD in the polypeptide level, respectively. The Scgad gene was expressed in Escherichia coli BL21 (DE3) cells, and the expression was confirmed by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis. The results suggested that the S. cerevisiae GAD (ScGAD) was successfully encoded in E. coli BL21 (DE3) cells. Furthermore, the enzyme activity of ScGAD encoded in E. coli BL21 (DE3) had been significantly enhanced using artificial neural network linked with genetic algorithm (ANN-GA) method.  相似文献   

15.
Proteins residing in lipid droplets (LDs) of organisms exhibit diverse physiological roles. Since the LD proteins of yeasts are largely unexplored, we have identified a putative LD protein gene, CtLDP1 in the oleaginous yeast Candida tropicalis SY005 and characterized its function. The increased lipid accumulation in SY005 could be correlated with enhanced (~2.67-fold) expression of the CtLDP1 after low-nitrogen stress. The N-terminal transmembrane domain similar to perilipin proteins and the amphipathic α-helices predicted in silico, presumably aid in targeting the CtLDP1 to LD membranes. Heterologous expression of CtLDP1-mCherry fusion in Saccharomyces cerevisiae revealed localization in LDs, yet the expression of CtLDP1 did not show significant effect on LD formation in transformed cells. Molecular docking showed favourable interactions of the protein with sterol class of molecules, but not with triacylglycerol (TAG); and this was further experimentally verified by co-localization of the mCherry-tagged protein in TAG-deficient (but steryl ester containing) LDs. While oleic acid supplementation caused coalescence of LDs into supersized ones (average diameter = 1.19 ± 0.12 μm; n = 160), this effect was suppressed due to CtLDP1 expression, and the cells mostly exhibited numerous smaller LDs (average diameter = 0.46 ± 0.05 μm; n = 160). Moreover, CtLDP1 expression in pet10Δ knockout strain of S. cerevisiae restored multiple LD formation, indicating functional complementation of the protein. Overall, this study documents functional characterization of an LD-stabilizing protein from an oleaginous strain of Candida genus for the first time, and provides insights on the characteristics of LD proteins in oleaginous yeasts for future metabolic engineering.  相似文献   

16.
A study was conducted to examine the effects of three probiotics, Lactobacillus sporogenes, Bacillus subtilis and Saccharomyces cerevisiae on the survival, growth and digestive enzymes activities of the freshwater prawn Macrobrachium rosenbergii post larvae (PL). The probiotics, L. sporogenes (4 %), B. subtilis (3 %) and S. cerevisiae (4 %) were taken and mixed with basal diet. Diet without probiotics served as control. These probiotics diets were fed to M. rosenbergii PL for a period of 60 days. After the feeding trail, the growth parameters such as survival, weight gain, specific growth rate and protein efficiency rate were found to be significantly (P < 0.05) higher in 4 % S. cerevisiae incorporated diet fed PL when compared with control. In the case of feed conversion rate just the reverse was seen (P < 0.05) at this concentration. This indicates its superior quality among different concentrations of probiotics tested. Activities of digestive enzymes, such as protease, amylase and lipase were significantly (P < 0.05) higher at this concentration (4 % S. cerevisiae). Some of essential and non-essential amino acids also significantly elevated in probiotics supplemented diet fed prawns. This study indicated that probiotics, S. cerevisiae incorporated diets were beneficial for M. rosenbergii in terms of increasing growth, enzyme and amino acid production.  相似文献   

17.
The fruity odor of Chinese liquor is largely derived from ester formation. Ethyl caproate, an ethyl ester eliciting apple-like flavor, is one of the most important esters in the strong aromatic Chinese liquor (or Luzhou-flavor liquor), which is the most popular and best-selling liquor in China. In the traditional fermentation process, ethyl caproate in strong aromatic liquor is mainly produced by aroma-producing yeast, bacteria, and mold with high esterification abilities in a mud pit at later fermentation stages at the expense of both fermentation time and grains rather than by the ethanol-fermenting yeast Saccharomyces cerevisiae. To increase the production of ethyl caproate by Chinese liquor yeast (S. cerevisiae AY15) and shorten the fermentation period, we constructed a recombinant strain EY15 by overexpressing EHT1 (encoding ethanol hexanoyl transferase), in which FAA1 (encoding acyl-CoA synthetases) was deleted. In liquid fermentation of corn hydrolysate and solid fermentation of sorghum, ethyl caproate production by EY15 was remarkably increased to 2.23 and 2.83 mg/L, respectively, which were 2.97- and 2.80-fold higher than those of the parental strain AY15. Furthermore, an increase in ethyl octanoate (52 and 43 %) and ethyl decanoate (61 and 40 %) production was observed. The differences in fermentation performance between EY15 and AY15 were negligible. This study resulted in the creation of a promising recombinant yeast strain and introduced a method that can be used for the clean production of strong aromatic Chinese liquor by ester-producing S. cerevisiae without the need for a mud pit.  相似文献   

18.
The pentose phosphate pathway (PPP) plays an important role in the efficiency of xylose fermentation during cellulosic ethanol production. In simultaneous saccharification and co-fermentation (SSCF), the optimal temperature for cellulase hydrolysis of lignocellulose is much higher than that of fermentation. Successful use of SSCF requires optimization of the expression of PPP genes at elevated temperatures. This study examined the combinatorial expression of PPP genes at high temperature. The results revealed that over-expression of TAL1 and TKL1 in Saccharomyces cerevisiae (S. cerevisiae) at 30 °C and over-expression of all PPP genes at 36 °C resulted in the highest ethanol productivities. Furthermore, combinatorial over-expression of PPP genes derived from S. cerevisiae and a thermostable yeast Kluyveromyces marxianus allowed the strain to ferment xylose with ethanol productivity of 0.51 g/L/h, even at 38 °C. These results clearly demonstrate that xylose metabolism can be improved by the utilization of appropriate combinations of thermostable PPP genes in high-temperature production of ethanol.  相似文献   

19.
Glutamate carboxypeptidase II (GCPII) haplotypes were found to influence susceptibility to prostate cancer. In the current study, we have elucidated the impact of these haplotypes on the expression of PSMA, BNIP3, Ec-SOD, GSTP1 and RASSF1 genes to understand the epigenetic basis of oxidative stress and prostate cancer risk. Expression analysis was carried out by RT-PCR. Bisulphite treated DNA was subjected to MS-PCR and COBRA for epigenetic studies. Plasma MDA and glutathione levels were measured. In prostate cancer, upregulation of BNIP3 (204.4 ± 23.77 vs. 143.9 ± 16.42 %, p = 0.03); and downregulation of Ec-SOD (105.8 ± 13.69 vs. 176.3 ± 21.1 %, p = 0.027) and RASSF1A (16.67 ± 16.0 vs. 90.8 ± 8.5 %, p = 0.0048) was observed. Hypomethylation of BNIP3 (31.25 ± 16.19 vs. 45.70 ± 2.42 %, p < 0.0001), hypermethylation of Ec-SOD (71.4 ± 6.75 vs. 10.0 ± 3.78 %, p < 0.0001) and RASSF1 (76.25 ± 12.53 vs. 30.0 ± 8.82 %, p = 0.0077) was observed in prostate cancer. The gene expression signature of PSMA, BNIP3, Ec-SOD, GSTP1, clearly demarcated cases and controls (AUC = 0.89 in the ROC curve). D191V variant of GCPII showed positive association with oxidative stress and inverse association with Ec-SOD expression. H475Y variant showed positive association with Ec-SOD expression and inverse association with oxidative stress. R190W variant was found to reduce oxidative stress by increasing glutathione levels. GCPII genetic variants contribute to increased oxidative stress and prostate cancer risk by modulating the CpG island methylation of Ec-SOD.  相似文献   

20.
Cardiovascular disease is the main cause of death worldwide, and dyslipidemia is an important multifactorial risk factor. Considering the involvement of nuclear receptors in metabolic pathways, and that some of the receptors act in lipid metabolism and homeostasis, the aim of the present study was to investigate the influence of genetic variations in RXRA, PPARA, NR1I2, and NR1I3 on lipid and lipoprotein levels. Five polymorphisms in the aforementioned genes were genotyped in 622 Brazilians of European descent by PCR-RFLP or TaqMan genotyping assays. In general, carriers of the A insertion of RXRA rs11381416 polymorphism showed higher levels of triglyceride (TG; 1.80 ± 1.20 vs. 1.52 ± 1.20 mmol/L; P = 0.020). Moreover, sexual dimorphic association was found (gender*NR1I3 rs2501873 genotype interaction P < 0.001), males with NR1I3 rs2501873 G/G genotype had lower TG levels (ANCOVA, P = 0.009). Our results suggest that polymorphisms in the RXRA and NR1I3 genes influence lipid profile in a Southern Brazilian population. However, these general and gender association require confirmation in subsequent studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号