共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
O. V. Menyailo 《Biology Bulletin》2006,33(5):492-497
The effect of six Siberian tree species on two stages of denitrification—N2O production and consumption—was studied. Broadleaf species (aspen and birch) proved to have lower rates of N2O consumption compared to coniferous species. The factors influencing production and consumption of N2O were also evaluated. The replacement of coniferous forests with broadleaf trees will double the N2O/N2 ratio in the denitrification end-products. Doubled N2O emission from Siberian forest soils to the atmosphere can be expected due to changes in tree species composition of forest ecosystems even without considering changes in water and temperature regimes in soil. 相似文献
3.
Here we report on a controlled environment experiment in which we applied 13C- and 15N-enrichment approaches to quantify methane oxidation rates and source partition N2O production in a silt loam soil following application of NH4NO3, enabling us to look for potential interactions between methane oxidation and nitrifier-N2O production. 15N-N2O, 14+15N-N2O and CO2 fluxes and mineral N concentrations were measured over a 23-day period after application of NH4NO3 (5 at.% excess 15N) at rates of 0, 5, 10, 20, 30 and 40 g N m?2 to a silt loam soil. Change in 12/13C-CH4 concentrations (as indicative of 13C-CH4 oxidation rates) and production of 13C-CO2 were monitored over the first 72 h after addition of 1.7 ??l 13C-CH4 l?1 (10 at.% excess 13C) to these N treatments. Oxidation of applied 13C-CH4 was slower in the 5, 10, 20 and 30 g N m?2 (5 at.% excess 15N) treatments (0.24?C0.32 ??g 13C-CH4 l?1 day?1) than in the control (0.40 ??g 13C-CH4 l?1 day?1), suggesting that these N loadings inhibited oxidation. N2O production was raised after N addition, and in the 10, 20 and 30 g N m?2 treatments nitrification was the predominant source of N2O accounting for 61, 83 and 57% of the total 15N-N2O produced, respectively. Our results point towards the possibility of methylotrophs switching function to oxidise ammonia in the presence of N, which may result in greater atmospheric loading of both CH4 and N2O. 相似文献
4.
Eugenio Díaz-Pinés Andreas Schindlbacher Marina Godino Barbara Kitzler Robert Jandl Sophie Zechmeister-Boltenstern Agustín Rubio 《Plant and Soil》2014,384(1-2):243-257
Background and Aims
Tree species composition shifts can alter soil CO2 and N2O effluxes. We quantified the soil CO2 and N2O efflux rates and temperature sensitivity from Pyrenean oak, Scots pine and mixed stands in Central Spain to assess the effects of a potential expansion of oak forests.Methods
Soil CO2 and N2O effluxes were measured from topsoil samples by lab incubation from 5 to 25 °C. Soil microbial biomass and community composition were assessed.Results
Pine stands showed highest soil CO2 efflux, followed by mixed and oak forests (up to 277, 245 and 145 mg CO2-C m?2 h?1, respectively). Despite contrasting soil microbial community composition (more fungi and less actinomycetes in pine plots), carbon decomposability and temperature sensitivity of the soil CO2 efflux remain constant among tree species. Soil N2O efflux rates and its temperature sensitivity was markedly higher in oak stands than in pine stands (70 vs. 27 μg N2O-N m?2 h?1, Q10, 4.5 vs. 2.5).Conclusions
Conversion of pine to oak forests in the region will likely decrease soil CO2 effluxes due to decreasing SOC contents on the long run and will likely enhance soil N2O effluxes. Our results present only a seasonal snapshot and need to be confirmed in the field. 相似文献5.
Summary The method described here makes it possible to determine gaseous and volatile compounds produced by stationary and shaken cultures of microorganisms, and by soil samples. In a closed system oxygen consumed by a biological sample is electrolytically replenished and CO2 produced is trapped in a KOH solution. Oxygen from the electrolyzer was replenished through a distribution bottle with the aid of a system of polyethylene tubings equipped with injection needles at both ends. The amount of the oxygen consumed is permanently reflected by volume of the electrolytically released hydrogen. The reverse flow of atmosphere from the cultivation flasks was prevented by a liquid seal formed by a KOH solution or the cultivation medium itself. Suba-seal type flasks (125 ml) with rubber caps served for the cultivation. Glass cylinders placed inside cultivation flasks or penicillin flasks (20 ml) connected with cultivation flasks by polyethylene tubings served as adsorption vessels. By exchanging the KOH solution it is possible to follow CO2 production even during individual cultivation phases. Volatile acids adsorbed in the KOH solution could be determined after their release by mineral acid. Samples of atmosphere were analyzed by gas chromatography. The whole system had to be temperature equilibrated. 相似文献
6.
The N2O flux from the surface of grass-covered pots was only significant following grass maturing. Removal of the above-ground plant
material resulted in an immediate and long-lasting increase in N2O production in the soil. The results suggest that easily available organic matter from the roots stimulates the denitrification
when the plants are damaged. Grass cutting might therefore result in a marked nitrogen loss through denitrification. The quantitative
effect was equal in soil with and without succinate added. The size of the anaerobic zone around the roots is therefore sufficient
to allow for denitrification activity mediated by increased organic matter availability because of plant cutting. 相似文献
7.
8.
Denitrification and N2O emission rates were measured following two applications of artificial urine (40 g urine-N m–2) to a perennial rye-grass sward on sandy soil. To distinguish between N2O emission from denitrification or nitrification, urine was also applied with a nitrification inhibitor (dicyandiamide, DCD). During a 14 day period following each application, the soil was frequently sampled, and incubated with and without acetylene to measure denitrification and N2O emission rates, respectively.Urine application significantly increased denitrification and N2O emission rates up to 14 days after application, with rates amounting to 0.9 and 0.6 g N m–2 day–1 (9 and 6 kg N ha–1 day–1), respectively. When DCD was added to the urine, N2O emission rates were significantly lower from 3 to 7 days after urine application onwards. Denitrification was the main source of N2O immediately following each urine application. 14 days after the first application, when soil water contents dropped to 15% (v/v) N2O mainly derived from nitrification.Total denitrification losses during the 14 day periods were 7 g N m–2, or 18% of the urine-N applied. Total N2O emission losses were 6.5 and 3 g N m–2, or 16% and 8% of the urine-N applied for the two periods. The minimum estimations of denitrification and N2O emission losses from urine-affected soil were 45 to 55 kg N ha–1 year–1, and 20 to 50 kg N ha–1 year–1, respectively. 相似文献
9.
Net productions of permanent soil atmosphere gases (N2, CO2, O2) and temporary gases (N2O, NO) were monitored in soil cores using a non-interfering, fully automated measuring technique allowing highly time resolved measurements over prolonged periods. The influence of changes in available organic carbon on CO2, N2O, NO and N2 production was studied by changing the soil carbon content through aerobic preincubations of different length, up to 21 days.The aerobic preincubation caused an increase in NO3
- concentration and a decrease in available carbon content. Available carbon content dominated both CO2 and total N gas (N2+N2O+NO) production during anaerobiosis. Both CO2 and total N gas production rates decreased with increasing length of the previous aerobic preincubation, this in spite of the higher initial NO3
- concentration.Total denitrification rates were closely related to the anaerobic CO2 production rates. No relation was found between water soluble carbon content and total denitrification. The N2O/N2 ratio could be explained by an interaction of carbon availability, NO3
- concentration and enzyme status. Net N2O consumption was monitored. The balance between cumulative total N gas production and NO3
- consumption varied according to the different treatments. Cumulative N2O production exceeded cumulative N2 production for 0 up to 5 days. 相似文献
10.
Li Yongchun Li Yongfu Chang Scott X. Xu Qiufang Guo Zhiying Gao Qun Qin Ziyan Yang Yunfeng Chen Junhui Liang Xue 《Plant and Soil》2017,415(1-2):507-520
Plant and Soil - Loss of biodiversity caused by intensive agriculture is a major worldwide concern. Crop rotation can enhance crop productivity and increase soil microbial diversity. However, the... 相似文献
11.
12.
Steady-state nitrogen isotope effects of N2 and N2O production in Paracoccus denitrificans 总被引:2,自引:0,他引:2
Barford CC Montoya JP Altabet MA Mitchell R 《Applied and environmental microbiology》1999,65(3):989-994
Nitrogen stable-isotope compositions (delta15N) can help track denitrification and N2O production in the environment, as can knowledge of the isotopic discrimination, or isotope effect, inherent to denitrification. However, the isotope effects associated with denitrification as a function of dissolved-oxygen concentration and their influence on the isotopic composition of N2O are not known. We developed a simple steady-state reactor to allow the measurement of denitrification isotope effects in Paracoccus denitrificans. With [dO2] between 0 and 1.2 microM, the N stable-isotope effects of NO3- and N2O reduction were constant at 28.6 per thousand +/- 1.9 per thousand and 12.9 per thousand +/- 2.6 per thousand, respectively (mean +/- standard error, n = 5). This estimate of the isotope effect of N2O reduction is the first in an axenic denitrifying culture and places the delta15N of denitrification-produced N2O midway between those of the nitrogenous oxide substrates and the product N2 in steady-state systems. Application of both isotope effects to N2O cycling studies is discussed. 相似文献
13.
Intermittent drainage of rice fields isdiscussed as an option to mitigate emission ofCH4, an important greenhouse gas. HoweverN2O, a potentially more effective greenhouse gas,may be emitted during the aeration phase. Therefore,the metabolism of NO, N2O, NH
,NO
and NO
and the kinetics ofCH4 oxidation were measured after aeration ofmethanogenic rice field soil. Before aeration, thesoil contained NH
in relatively highconcentrations (about 4 mM), while NO
andNO
were almost undetectable. Immediatelyafter aeration both NO and N2O were produced withrates of about 15 pmol h-1 gdw-1 and 5 pmolh-1 gdw-1, respectively. Simultaneously,NH
decreased while NO
accumulated. Later on, NO
was depletedwhile NO
concentrations increased.Characteristic phases of nitrogen turnover wereassociated with the activities of ammonium oxidizers,nitrite oxidizers and denitrifiers. Oxidation ofNH
and production of NO and N2O wereinhibited by 10 Pa acetylene demonstrating thatnitrification was obligatory for the initiation ofnitrogen turnover and production of NO and N2O.Ammonium oxidation was not limited by the availableNH
and thus, concomittant production of NOand N2O was not stimulated by addition ofNH
. However, addition of NO
stimulated production of NO and N2O in bothanoxic and aerated rice soil slurries. In this case,10 Pa acetylene did not inhibit the production of NOand N2O demonstrating that it was due todenitrification which was obviously limited by theavailability of NO
. In the aerated soilslurries CH4 was only oxidized if present atelevated concentrations >50 ppmv CH4). Atatmospheric CH4 concentrations (1.7 ppmv)CH4 was not consumed, but was even slightly produced.CH4 oxidation activity increased afterpreincubation at 20% CH4, and then CH4was also oxidized at atmospheric concentrations. CH4oxidation kinetics exhibited sigmoid characteristicsat low CH4 concentrations presumably because ofinhibition of CH4 oxidation by NH
. 相似文献
14.
S Franz Bender Faline Plantenga Albrecht Neftel Markus Jocher Hans-Rudolf Oberholzer Luise K?hl Madeline Giles Tim J Daniell Marcel GA van der Heijden 《The ISME journal》2014,8(6):1336-1345
N2O is a potent greenhouse gas involved in the destruction of the protective ozone layer in the stratosphere and contributing to global warming. The ecological processes regulating its emissions from soil are still poorly understood. Here, we show that the presence of arbuscular mycorrhizal fungi (AMF), a dominant group of soil fungi, which form symbiotic associations with the majority of land plants and which influence a range of important ecosystem functions, can induce a reduction in N2O emissions from soil. To test for a functional relationship between AMF and N2O emissions, we manipulated the abundance of AMF in two independent greenhouse experiments using two different approaches (sterilized and re-inoculated soil and non-mycorrhizal tomato mutants) and two different soils. N2O emissions were increased by 42 and 33% in microcosms with reduced AMF abundance compared to microcosms with a well-established AMF community, suggesting that AMF regulate N2O emissions. This could partly be explained by increased N immobilization into microbial or plant biomass, reduced concentrations of mineral soil N as a substrate for N2O emission and altered water relations. Moreover, the abundance of key genes responsible for N2O production (nirK) was negatively and for N2O consumption (nosZ) positively correlated to AMF abundance, indicating that the regulation of N2O emissions is transmitted by AMF-induced changes in the soil microbial community. Our results suggest that the disruption of the AMF symbiosis through intensification of agricultural practices may further contribute to increased N2O emissions. 相似文献
15.
Contrasting fine-root production,survival and soil CO2 efflux in pine and poplar plantations 总被引:5,自引:0,他引:5
Tree root activity, including fine-root production, turnover and metabolic activity are significant components of forest productivity
and nutrient cycling. Differences in root activity among forest types are not well known. A 3-year study was undertaken in
red pine (Pinus resinosa Ait.) and hybrid poplar (Populus tristis X P. balsamifera cv `Tristis no. 1') plantations to compare belowground root dynamics. We measured fine-root production, mortality and standing
crop, as well as soil CO2 efflux. Pine fine-root production was only 2.9% of that of poplar during three years; 85 pine roots were observed in minirhizotron
tubes compared with 4088 poplar roots. Live-root density oscillated seasonally for both species with late winter minimum and
autumn maximum. Poplar reached constant maximum live-root length within the first growing season, but pine continued to increase
observed fine-root length for three growing seasons. Within the first 100 days following initial appearance, 22% of the pine
roots disappeared and 38% of the poplar roots disappeared. Median fine-root longevity of pine was 291 days compared with 149
days for poplar roots. Fine-root longevity increased with depth in the soil, and was greater for roots with initial diameter
>0.5 mm. The probability of poplar root death from late February to May was more than three times that in any other season,
regardless of root age. Despite the greater poplar root production and live-root length, fine-root biomass and soil CO2 efflux was greater in pine. Greater metabolic activity in the pine stand may be due to greater fine-root biomass or greater
heterotrophic respiration.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
16.
Rhizosphere processes in nitrate-rich barley soil tripled both N2O and N2 losses due to enhanced bacterial and fungal denitrification 总被引:1,自引:0,他引:1
Senbayram Mehmet Well Reinhard Shan Jun Bol Roland Burkart Stefan Jones David L. Wu Di 《Plant and Soil》2020,448(1-2):509-522
Plant and Soil - Plants can directly affect nitrogen (N) transformation processes at the micro-ecological scale when soil comes into contact with roots. Due to the methodological limitations in... 相似文献
17.
With the ability to symbiotically fix atmospheric N2, legumes may lack the N-limitations thought to constrain plant response to elevated concentrations of atmospheric CO2. The growth and photosynthetic responses of two perennial grassland species were compared to test the hypotheses that (1) the CO2 response of wild species is limited at low N availability, (2) legumes respond to a greater extent than non-fixing forbs to elevated CO2, and (3) elevated CO2 stimulates symbiotic N2 fixation, resulting in an increased amount of N derived from the atmosphere. This study investigated the effects of atmospheric CO2 concentration (365 and 700 mol mol–1) and N addition on whole plant growth and C and N acquisition in an N2-fixing legume (Lupinus perennis) and a non-fixing forb (Achillea millefolium) in controlled-chamber environments. To evaluate the effects of a wide range of N availability on the CO2 response, we incorporated six levels of soil N addition starting with native field soil inherently low in N (field soil + 0, 4, 8, 12, 16, or 20 g N m–2 yr–1). Whole plant growth, leaf net photosynthetic rates (A), and the proportion of N derived from N2 fixation were determined in plants grown from seed over one growing season. Both species increased growth with CO2enrichment, but this response was mediated by N supply only for the non-fixer, Achillea. Its response depended on mineral N supply as growth enhancements under elevated CO2 increased from 0% in low N soil to +25% at the higher levels of N addition. In contrast, Lupinus plants had 80% greater biomass under elevated CO2 regardless of N treatment. Although partial photosynthetic acclimation to CO2 enrichment occurred, both species maintained comparably higher A in elevated compared to ambient CO2 (+38%). N addition facilitated increased A in Achillea, however, in neither species did additional N availability affect the acclimation response of A to CO2. Elevated CO2 increased plant total N yield by 57% in Lupinus but had no effect on Achillea. The increased N in Lupinus came from symbiotic N2 fixation, which resulted in a 47% greater proportion of N derived from fixation relative to other sources of N. These results suggest that compared to non-fixing forbs, N2-fixers exhibit positive photosynthetic and growth responses to increased atmospheric CO2 that are independent of soil N supply. The enhanced amount of N derived from N2 fixation under elevated CO2 presumably helps meet the increased N demand in N2-fixing species. This response may lead to modified roles of N2-fixers and N2-fixer/non-fixer species interactions in grassland communities, especially those that are inherently N-poor, under projected rising atmospheric CO2. 相似文献
18.
Soil N availability may play an important role in regulating the long-term responses of plants to rising atmospheric CO2 partial pressure. To further examine the linkage between above- and belowground C and N cycles at elevated CO2, we grew clonally propagated cuttings of Populus grandidentata in the field at ambient and twice ambient CO2 in open bottom root boxes filled with organic matter poor native soil. Nitrogen was added to all root boxes at a rate equivalent
to net N mineralization in local dry oak forests. Nitrogen added during August was enriched with 15N to trace the flux of N within the plant-soil system. Above-and belowground growth, CO2 assimilation, and leaf N content were measured non-destructively over 142 d. After final destructive harvest, roots, stems,
and leaves were analyzed for total N and 15N.
There was no CO2 treatment effect on leaf area, root length, or net assimilation prior to the completion of N addition. Following the N addition,
leaf N content increased in both CO2 treatments, but net assimilation showed a sustained increase only in elevated CO2 grown plants. Root relative extension rate was greater at elevated CO2, both before and after the N addition. Although final root biomass was greater at elevated CO2, there was no CO2 effect on plant N uptake or allocation. While low soil N availability severely inhibited CO2 responses, high CO2 grown plants were more responsive to N. This differential behavior must be considered in light of the temporal and spatial
heterogeneity of soil resources, particularly N which often limits plant growth in temperate forests. 相似文献
19.
Katja Pörtl Sophie Zechmeister-Boltenstern Wolfgang Wanek Per Ambus Torsten W. Berger 《Plant and Soil》2007,295(1-2):79-94
Natural 15N abundance measurements of ecosystem nitrogen (N) pools and 15N pool dilution assays of gross N transformation rates were applied to investigate the potential of δ15N signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected from pure
spruce (Picea abies (L.) Karst.) and mixed spruce-beech (Fagus sylvatica L.) stands on stagnic gleysol in Austria. Soil δ15N values of both forest sites increased with depth to 50 cm, but then decreased below this zone. δ15N values of microbial biomass (mixed stand: 4.7 ± 0.8‰, spruce stand: 5.9 ± 0.9‰) and of dissolved organic N (DON; mixed stand:
5.3 ± 1.7‰, spruce stand: 2.6 ± 3.3‰) were not significantly different; these pools were most enriched in 15N of all soil N pools. Denitrification represented the main N2O-producing process in the mixed forest stand as we detected a significant 15N enrichment of its substrate NO3− (3.6 ± 4.5‰) compared to NH4+ (−4.6 ± 2.6‰) and its product N2O (−11.8 ± 3.2‰). In a 15N-labelling experiment in the spruce stand, nitrification contributed more to N2O production than denitrification. Moreover, in natural abundance measurements the NH4+ pool was slightly 15N-enriched (−0.4 ± 2.0 ‰) compared to NO3− (−3.0 ± 0.6 ‰) and N2O (−2.1 ± 1.1 ‰) in the spruce stand, indicating nitrification and denitrification operated in parallel to produce N2O. The more positive δ15N values of N2O in the spruce stand than in the mixed stand point to extensive microbial N2O reduction in the spruce stand. Combining natural 15N abundance and 15N tracer experiments provided a more complete picture of soil N dynamics than possible with either measurement done separately. 相似文献
20.
Satoshi Ishii Hiroki Ohno Masahiro Tsuboi Shigeto Otsuka Keishi Senoo 《The ISME journal》2011,5(12):1936-1945
Dissolved N2O is occasionally detected in surface and ground water in rice paddy fields, whereas little or no N2O is emitted to the atmosphere above these fields. This indicates the occurrence of N2O reduction in rice paddy fields; however, identity of the N2O reducers is largely unknown. In this study, we employed both culture-dependent and culture-independent approaches to identify N2O reducers in rice paddy soil. In a soil microcosm, N2O and succinate were added as the electron acceptor and donor, respectively, for N2O reduction. For the stable isotope probing (SIP) experiment, 13C-labeled succinate was used to identify succinate-assimilating microbes under N2O-reducing conditions. DNA was extracted 24 h after incubation, and heavy and light DNA fractions were separated by density gradient ultracentrifugation. Denaturing gradient gel electrophoresis and clone library analysis targeting the 16S rRNA and the N2O reductase gene were performed. For culture-dependent analysis, the microbes that elongated under N2O-reducing conditions in the presence of cell-division inhibitors were individually captured by a micromanipulator and transferred to a low-nutrient medium. The N2O-reducing ability of these strains was examined by gas chromatography/mass spectrometry. Results of the SIP analysis suggested that Burkholderiales and Rhodospirillales bacteria dominated the population under N2O-reducing conditions, in contrast to the control sample (soil incubated with only 13C-succinate). Results of the single-cell isolation technique also indicated that the majority of the N2O-reducing strains belonged to the genera Herbaspirillum (Burkholderiales) and Azospirillum (Rhodospirillales). In addition, Herbaspirillum strains reduced N2O faster than Azospirillum strains. These results suggest that Herbaspirillum spp. may have an important role in N2O reduction in rice paddy soils. 相似文献