首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An in vitro test system for measuring DNA and protein synthesis in cultivated lens epithelium cells was developed. The method is suited also for other monolayer cultures; it has the following advantages: a) Cultivation of cells, incubation with radionuclides, preparation of the samples and measurement of radioactivity are carried out in the same vessel (scintillation vial); b) The use of 3H-thymidine and 14C-phenylalanine allows simultaneous measurement of DNA and protein synthesis; c) Only small amounts of cells (10(4) to 10(5) cells) are required to measure DNA and protein synthesis. The test system is highly sensitive to synthetic effectors (cytosone arabinoside, actinomycin D, puromycin), and is thus appropriate for the detection of inhibitors of DNA and protein synthesis and for testing the toxicity of drugs.  相似文献   

2.
In vitro assays involving primary cells are used routinely to evaluate organ-specific toxic effects, for instance, the use of primary hepatocytes to evaluate hepatotoxicity. A major drawback of an in vitro system is the lack of multiple organ interactions as observed in a whole organism. A novel cell culture system, the integrated discrete multiorgan cell culture system (IdMOC), is described here. The IdMOC is based on the "wells within a well" concept, consisting of a cell culture plate with larger, containing wells, within each of which are multiple smaller wells. Cells from multiple organs can be cultured initially in the small wells (one organ per well, each in its specialized medium). On the day of toxicity testing, a volume of drug-containing medium is added to the containing well to flood all inner wells, thereby interconnecting all the small wells. After testing, the overlying medium is removed and each cell type is evaluated for toxicity using appropriate endpoints. We report here the application of IdMOC in the evaluation of the cytotoxicity of tamoxifen, an anticancer agent with known human toxicity, on primary cells from multiple human organs: liver (hepatocytes), kidney (kidney cortical cells), lung (small airway epithelial cells), central nervous system (astrocytes), blood vessels (aortic endothelial cells) as well as the MCF-7 human breast adenocarcinoma cells. IdMOC produced results that can be used for the quantitative evaluation of its anticancer effects (i.e., cytotoxicity towards MCF-7 cells) versus its toxicity toward normal organs (i.e., liver, kidney, lung, CNS, blood vessels).  相似文献   

3.
Liverpool John Moores University and FRAME conducted a research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This paper focuses on the prospects for the use of alternative methods (both in vitro and in silico) in developmental and reproductive toxicity testing. It considers many tests based on primary cells and cell lines, and the available expert systems and QSARs for developmental and reproductive toxicity, and also covers tests for endocrine disruption. Ways in which reduction and refinement measures can be used are also discussed, particularly the use of an enhanced one-generation reproductive study, which could potentially replace the two-generation study, and therefore considerably reduce the number of animals required in reproductive toxicity. Decision-tree style integrated testing strategies are also proposed for developmental and reproductive toxicity and for endocrine disruption, followed by a number of recommendations for the future facilitation of developmental and reproductive toxicity testing, with respect to human risk assessment.  相似文献   

4.
5.
The lens represents an ideal model system for studying many of the cellular and molecular events of differentiation. It is composed of two ectodermally-derived cell types: the lens epithelial cells and the lens fibre cells, which are derived from the lens epithelial cells by differentiation. Programmed removal of nuclei and other organelles from the lens fibre cells ensures that an optically clear structure is created, while the morphology of the degenerating nuclei is similar to that observed during apoptosis and is accompanied by DNA fragmentation. These observations suggest the existence of biochemical parallels between the process of lens fibre cell organelle loss and classical apoptosis. For example, proteins encoded by the bcl-2 and caspase gene families are expressed in developing lenses and nuclear degeneration in lens fibre cells can be inhibited in vivo by overexpression of bcl-2 and in vitro by incubation of differentiating lens epithelial cell cultures with caspase inhibitors. Thus, the developing lens may represent a particularly useful model system for researchers interested in apoptosis. In this review, the recent literature pertaining to lens fibre cell organelle loss and its relationship to apoptosis is reviewed and possible future research directions are suggested.  相似文献   

6.
The analysis of newt lens regeneration has been an important subject in developmental biology. Recently, it has been reported that the genes involved in the normal eye development are also expressed in the regenerative process of lens regeneration in the adult newt. However, functional analysis of these genes has not been possible, because there is no system to introduce genes efficiently into the cells involved in the regeneration. In the present study, lipofection was used as the method for gene transfer in cultured pigmented iris cells that can transdifferentiate into lens cells in newt lens regeneration. Positive expression of a reporter gene was obtained in more than 70% of cells. In addition, the aggregate derived from gene-transfected cells maintained its expression at a high level for a long time within the host tissue. To verify the effectiveness of this model system with a reporter gene in lens regeneration, Pax6, which is suggested to be involved in normal eye development and lens regeneration, was transfected. Ectopic expression of lens-specific crystallins was obtained in cells that show no such activity in normal lens regeneration. These results made it possible for the first time to analyze the molecular mechanism of lens regeneration in the adult newt.  相似文献   

7.
There is an urgent need for new in vitro methods to predict the potential developmental toxicity of candidate drugs in the early lead identification and optimisation process. This would lead to a reduction in the total number of animals required in full-scale developmental toxicology studies, and would improve the efficiency of drug development. However, suitable in vitro systems permitting robust high-throughput screening for this purpose, for the most part, remain to be designed. An understanding of the mechanisms involved in developmental toxicity may be essential for the validation of in vitro tests. Early response biomarkers - even a single one - could contribute to reducing assay time and facilitating automation. The use of toxicogenomics approaches to study in vitro and in vivo models in parallel may be a powerful tool in defining such mechanisms of action and the molecular targets of toxicity, and also for use in finding possible biomarkers of early response. Using valproic acid as a model substance, the use of DNA microarrays to identify teratogen-responsive genes in cell models is discussed. It is concluded that gene expression in P19 mouse embryocarcinoma cells represents a potentially suitable assay system, which could be readily used in a tiered testing system for developmental toxicity testing.  相似文献   

8.
Biopharmaceutical industry currently produces considerable quantity of novel recombinant preparations by way of overexpression in Escherichia coli cells, an inexpensive, efficient, time-proven, and practically feasible system of heterologous expression. Due to the instability of maintenance and inheritance of expression vectors in producer cells, the cells that have spontaneously lost the plasmid gain a significant selective advantage over the cells producing a heterologous protein and accumulate in the fermentor. For solution of this problem, it is proposed to develop a new generation of expression vectors with high stability of inheritance in the absence of external selective pressure, using a replicon of phage N15, which possesses its own system for active distribution of plasmid copies in the daughter cells, supplemented by a toxin-antitoxin genetic module preventing the loss of a plasmid. Two new addiction modules homologous to the known ccdAB and mazEF systems were isolated from natural enterobacterial populations and characterized. The testing showed more effective operation of the ccdAB module. The latter was a basis for construction of new expression vectors pN15E41 and pN15E61 demonstrating the high synergism of action of the plasmid segregation systems and the addiction module and directly applicable for biotechnological practice.  相似文献   

9.
In newt lens regeneration, the dorsal iris has lens forming ability and the ventral iris has no such capability, whereas there is no difference in the morphological criteria. To investigate the real aspects of this characteristic lens regeneration in the newt at the cellular level, a useful model system was constructed by transplanting the dorsal and ventral reaggregate derived from singly dissociated pigmented epithelial cells of the iris into the blastema of the forelimb in the newt. The lens was formed from the dorsal reaggregate with high efficiency, but not from the ventral one. No lens formation was observed in the implantation of the reaggregate into the tissue of the intact limbs. In detailed examination of the process of lens formation from the reaggregate, it was shown that tubular formation was the first step in the rearrangement of cells within the reaggregate. This was followed by depigmentation, vesicle formation with active cell growth, and the final step was lens fiber formation by transdifferentiation of epithelial cells composing the lens vesicle. The process was almost the same as in situ lens regeneration except the reconstitution of the two-layered epithelial structure was embodied as flattened tubular formation in the first step. The present study made it possible for the first time to examine lens forming ability in the reaggregate mixed with dorsal and ventral cells, because the formation of a reaggregate was started from singly dissociated cells of the dorsal and ventral cells of the iris. Mixed reaggregate experiments indicated that the existence of the dorsal cells in a cluster within the reaggregate is important in lens formation, and ventral cells showed an inhibitory effect on the formation. The present study demonstrated that the limb system thus constructed was effective for the analysis of lens formation at the cellular level and made it possible to examine the role of dorsal and ventral cells in lens regeneration.  相似文献   

10.
Based on studies of wolffian lens regeneration in the newt, in which the lens can be regenerated from the iris pigmented epithelium, we have shown by cell culture studies that the capacity of lens transdifferentiation is not limited to the newt cells, but widely conserved in pigmented epithelial cells (PECs) of chick and quail embryos and even of human fetuses. Recently, we have established a unique in vitro model system of chick embryonic PECs. In this culture system we are able to control each step of transdifferentiation from PECs into lens cells by regulating culture conditions and to produce a homogeneous cell population with potential for synchronous differentiation into either lens or pigment cell phenotype. These multipotent (at least bipotent) cells showed cellular characteristics resembling neoplastic cells in many ways. They did not express both lens and pigment cell specific genes analyzed so far, except δ-crystallin gene, which is expressed in developing lens of chick embryos. It has been proved by application of cell culture procedures of the system that PECs dissociated from fully-grown human eyes readily transdifferentiated into lens phenotypes in the manner observed in chick embryo PECs. In addition, we could predict that molecules detected in either cell surface or intercellular space stabilized the differentiated state of PECs in the newt and that the loss of these molecules might be one of the key steps of lens regeneration from the iris epithelium.  相似文献   

11.
In Wolffian lens regeneration, lentectomized newt eye can produce a new lens from the dorsal marginal iris, but the ventral iris has never shown such capabilities. To investigate the difference of lens regenerating potency between dorsal and ventral iris epithelium at the cellular level, a transplantation system using cell reaggregates was developed. Two methods were devised for preparing the reaggregates from pigmented iris epithelial cells. One was rotating cells in an agar-coated multiplate on a gyratory shaker and the other was incubating cells in a microcentrifuge tube after slight centrifugation. Reaggregates made of dorsal iris cells that had been completely dissociated into single cells were phenotypically transformed into a lens when placed in the pupillary region of the lentectomized host eye. None of the ventral reaggregates produced a lens. Even dorsal reaggregates could not transdifferentiate into lens when they were placed away from the pupil. The produced lenses from the reaggregates were morphologically and immunohistochemically identified. To obtain evidence whether produced lenses really originated from singly dissociated cells, we labeled dissociated cells with a fluorescent dye (PKH26) before reaggregate formation and then traced it in the produced lens.  相似文献   

12.
13.
Background, aim, and scope  The environmental burden of photovoltaic (PV) solar modules is currently largely determined by the cumulative input of fossil energy used for module production. However, with an increased focus on limiting the emission of CO2 coming from fossil fuels, it is expected that renewable resources, including photovoltaics, may well become more important in producing electricity. A comparison of the environmental impacts of PV modules in case their life cycle is based on the use of PV electricity in contrast to conventional electricity can elucidate potential environmental drawbacks in an early stage of development of a solar-based economy. The goal of this paper is to show for ten impact categories the environmental consequences of replacing fossil electricity with solar electricity into the life cycle of two types of PV modules. Materials and methods  Using life cycle assessment (LCA), we evaluated the environmental impacts of two types of PV modules: a thin-film GaInP/GaAs tandem module and a multicrystalline silicon (multi-Si) module. For each of the modules, the total amount of fossil electricity required in the life cycle of the module was substituted with electricity that is generated by a corresponding PV module. The environmental impacts of the modules on the midpoint level were compared with those of the same modules in case their life cycle is based on the use of conventional electricity. The environmental impacts were assessed for Western European circumstances with an annual solar irradiation of 1000 kWh/m2. For the GaInP/GaAs module, the environmental impacts of individual production steps were also analysed. Results  Environmental burdens decreased when PV electricity was applied in the life cycle of the two PV modules. The impact score reductions of the GaInP/GaAs module were up to a factor of 4.9 (global warming). The impact score reductions found for the multi-Si module were up to a factor of 2.5 (abiotic depletion and global warming). Reductions of the toxicity scores of both module types were smaller or negligible. This is caused by a decreased use of fossil fuels, on the one hand, and an increased consumption of materials for the production of the additional solar modules used for generating the required PV electricity on the other. Overall, the impact scores of the GaInP/GaAs module were reduced more than the corresponding scores of the multi-Si module. The contribution analysis of the GaInP/GaAs module production steps indicated that for global warming, the cell growth process is dominant for supply with conventional electricity, while for the solar scenario, the frame becomes dominant. Regarding freshwater aquatic ecotoxicity scores associated with the life cycle of the GaInP/GaAs module, the cell growth process is dominant for supply with conventional electricity, while the reactor system for the cell growth with the associated gas scrubbing system is dominant for the solar scenario. Discussion  There are uncertainties regarding the calculated environmental impact scores. This paper describes uncertainties associated with the used economic allocation method, and uncertainties because of missing life cycle inventory data. For the GaInP/GaAs module, it was found that the global warming impact scores range from −66% to +41%, and the freshwater aquatic ecotoxicity scores (for an infinite time horizon) range from −40% to +300% compared to the default estimates. For both impact categories, the choices associated with the allocation of gallium, with the electricity mix, with the conversion efficiency of the commercially produced GaInP/GaAs cells, and with the yield of the cell growth process are most influential. For freshwater aquatic ecotoxicity, the uncertainty concerning the lifetime of the reactor system for the GaInP/GaAs cell growth process and the gas scrubbing system is particularly relevant. Conclusions  Use of PV electricity instead of fossil electricity significantly reduces the environmental burdens of the GaInP/GaAs and the multi-Si module. The reductions of the toxicity scores, however, are smaller or negligible. Toxicity impacts of the GaInP/GaAs cells can be reduced by improvement of the yield of the cell growth process, a reduced energy demand in the cell growth process, reduction of the amount of stainless steel in the cell growth reactor system and the gas scrubbing system, and a longer lifetime of these systems. Recommendations and perspectives  Because the greenhouse gas emissions associated with the production of fossil-fuel-based electricity have an important share in global warming on a world-wide scale, switching to a more extensive use of solar power is helpful to comply with the present international legislation on the area of global warming reduction. As reductions in toxicity impact scores are smaller or negligible when fossil electricity is replaced by PV electricity, it is desirable to give specific attention to the processes which dominantly contribute to these impact categories. Furthermore, in this study, a shift in ranking of several environmental impacts of the modules has been found when PV electricity is used instead of fossil electricity. The results of a comparative LCA can thus be dependent of the electricity mix used in the life cycles of the assessed products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Summary The bovine lens capsule has previously been shown to provide an optimal surface for the examination of epithelial cell interaction with a basement membrane. This native substrate has been used to investigate some initial aspects of attachment of mouse blastocysts and trophoblastic cellular outgrowth. Mouse blastocysts were presented to the cell-free humoral side of the anterior lens capsule, incubated for 72 h, and examined by scanning and transmission electron microscopy. Blastocysts hatch and attach from their zonae pellucidae by 30 h. Trophoblastic cells proliferate rapidly in a coronal direction, display extensive surface microvilli, and advance by the extension of numerous filipodia, many of which terminate with bulbous projections. These projections were shown by transmission electron microscopy to contain numerous vacuoles and polysomes. To simulate further the initial blastocyst-uterine interaction, a suspension of lens epithelial cells was introduced to the capsule and permitted to form a monolayer prior to the addition of the blastocysts. At 72 h the monolayer of lens cells remained intact. We observed that: a) lens cells appear to recede from the advancing trophoblastic cells, and b) trophoblastic cells extend beneath the monolayer of lens cells and thereby dislodge the cells from the lens capsule substrate. No infiltration of the capsule by the advancing trophoblastic cells was observed. The lens capsule appears to offer a promising system for the study of trophoblast-epithelial cell interaction on a natural basement membrane.  相似文献   

15.
A novel cell-based fluorometric sensor system for toxicity monitoring is described, which uses functional spontaneously contracting cardiomyocytes (HL-1 cell line) as the biological recognition element. Based on these highly specialized cells, it has the potential of providing a sensitive and relevant analytical in vitro toxicity testing method. The system was configured by propagating the surface-attaching HL-1 cardiomyocytes in the wells of a 96-well microtiter plate and connecting the plate via an optical fiber to a fluorescence spectrometer capable of excitation-emission matrix scanning. The fluorescence data were analyzed using a conventional spectral analysis software program. The performance of the system for detection of general cytotoxicity to the cells was evaluated using three well-known drugs: verapamil, quinidine, and acetaminophen. The dose-response curves were assessed and the EC50 values were determined (0.10 ± 0.007, 0.23 ± 0.025, and 12.32 ± 2.40 mM, respectively). Comparison with in vitro and in vivo reference data for the drugs showed good correlations, suggesting that this cell-based sensor system could be a useful tool in pharmacological in vitro drug testing.  相似文献   

16.
Evaluation of methods to solubilize and analyze cell-associated ectoenzymes   总被引:4,自引:0,他引:4  
A protocol for production, storage, and use of Shock 1 (Shk1) bioreporter cells for toxicity monitoring in wastewater treatment facilities was developed. Shk1 is a bioluminescent toxicity bioreporter for activated sludge previously constructed by the incorporation of lux genes into an activated sludge microorganism.

A number of factors affecting Shk1 growth and bioluminescence were examined including the growth medium, tetracycline concentration, storage conditions, and test media. Based on the results of these experiments, a toxicity testing protocol was developed that involved growth of cultures in nutrient broth with tetracycline, storage of cultures at 4 °C, cell activation by reinoculation into nutrient broth, and toxicity testing by cell injection into the test media. Effective use of this approach required standardized time intervals for cell growth, storage, activation and exposure in the test media.

Bioluminescence from Shk1 cells was measured in nutrient broth and influent wastewater and activated sludge mixed liquor from a municipal wastewater treatment plant. Using the Shk1 toxicity testing protocol, Zn EC50 values for bioluminescence in nutrient broth, influent wastewater, and activated sludge mixed liquor were approximately 42, 7, and 32 mg/l, respectively. Zn concentrations as low as 1 mg/l could be detected in influent wastewater. The detection limit in influent wastewater is below the Zn concentrations typically reported to affect the activated sludge process.  相似文献   


17.
18.
In Brazil, medicinal plants are widely used by the indigenous people, which leads to a constant requirement for toxicity tests to be performed on the plant extracts. Although the current Brazilian Directive 90/2004 on the preclinical toxicity testing of phytotherapeutics recommends only in vivo tests, some Brazilian researchers would like to change this situation by implementing the Three Rs in the toxicological testing of medicinal plants. The present study evaluated the cytotoxic and genotoxic potentials of bark extracts from Dipteryx alata Vogel, a medicinal plant of the Brazilian cerrado, by using CHO-K1 (Chinese hamster ovary) cells. An IC50 value was obtained, which corresponded to 0.16mg/ml of plant extract, and from this the equivalent LD50 was determined as 705mg/kg. In order to determine the genotoxic potential of the sample, the frequency of micronucleus formation was assessed. CHO-K1 cells were exposed, during targeted mitosis, to different concentrations of plant extract and cytochalasin B, in the presence and absence of an appropriate metabolic activation system (an S9 mix). The results obtained indicated that it might be possible to implement the Three Rs in assessing the potential human hazard of medicinal plants. The publication of such data can increase awareness of the Three Rs by showing how to optimise the management of animal use, if in vivo toxicological experiments are required.  相似文献   

19.
The morphological and cellular changes that occur with differentiation and development of a lentoid structure from cultured mouse lens epithelial cells have been found to be dependent on the presence of lens capsule in association with the cells. The development of the 'lentoid body' is a multiphase process involving cell replication, synthesis of mucosubstances and a basement collagen membrane, cell aggregation and differentiation. Stage-specific synthesis of lens proteins confirms that the genes regulating normal differentiation in vivo are operating in the in vitro system. The hydrated collagen gel studies described in this report demonstrate that the cuboidal morphology and apical-basal polarity of the lens epithelial cells are dependent on their relationship with the lens capsule. Following a replicative phase the cells assume a mesenchyme-like morphology and migrate into the gel. Trypsinized cells freed from the lens capsule replicate but form colonies on the surface of the gel. The implications of these results are discussed with respect to previous observations made on normal lens development and the abnormalities associated with the congenital cataractous embryonic lens.  相似文献   

20.
Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice   总被引:2,自引:0,他引:2  
Mice that could be highly repopulated with human hepatocytes would have many potential uses in drug development and research applications. The best available model of liver humanization, the uroplasminogen-activator transgenic model, has major practical limitations. To provide a broadly useful hepatic xenorepopulation system, we generated severely immunodeficient, fumarylacetoacetate hydrolase (Fah)-deficient mice. After pretreatment with a urokinase-expressing adenovirus, these animals could be highly engrafted (up to 90%) with human hepatocytes from multiple sources, including liver biopsies. Furthermore, human cells could be serially transplanted from primary donors and repopulate the liver for at least four sequential rounds. The expanded cells displayed typical human drug metabolism. This system provides a robust platform to produce high-quality human hepatocytes for tissue culture. It may also be useful for testing the toxicity of drug metabolites and for evaluating pathogens dependent on human liver cells for replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号