首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increased number of primates living in fragmented habitats necessitates greater knowledge of how they cope with large-scale changes to their environment. Chimpanzees (Pan troglodytes) are exceptionally vulnerable to forest fragmentation; however, little is known about chimpanzee feeding ecology in fragments. Although chimpanzees have been shown to prefer fruit when it is available and fall back on more abundant lower quality foods during periods of fruit scarcity, our understanding of how chimpanzees use fallback foods in forest fragments is poor. We examined how chimpanzees cope with periods of fruit scarcity in Gishwati Forest Reserve, a disturbed montane rain forest fragment in Rwanda. We assessed seasonal changes in chimpanzee diet and the use of preferred and fallback foods through fecal and food site analysis. We also examined seasonal variation in nest group size and habitat use through marked nest censuses. We found that chimpanzees experienced a seasonal reduction in preferred fruit availability, which led to a seasonal diet shift to more fibrous foods, including several that functioned as fallback foods. Our results suggest that during periods of fruit scarcity the chimpanzees also reduced nest group size. However, we found that the chimpanzees did not alter their habitat use between high- and low-fruit seasons, which suggests that the small size of the forest limits their ability to change their seasonal habitat use. Consequently, fallback foods appear to be particularly important in small food-impoverished habitats with limited ranging options.  相似文献   

2.
Lianas are important components in the dynamics of tropical forests and represent fallback foods for some primates, yet little is known about their impact on primate ecology, behavior or fitness. Using 2 yr of field data, we investigated liana consumption and foraging effort in four groups of howler monkeys (two in bigger, more conserved forest fragments and two in smaller, less conserved fragments) to assess whether howler monkeys use lianas when and where food availability is scarce, and how liana consumption is related to foraging effort. Howler monkeys in smaller fragments spent more time consuming lianas and liana consumption was negatively related to the consumption of preferred food resources (fruit and Ficus spp.). Further, travel time was positively related to liana feeding time, but not to tree feeding time, and howler monkeys visited a greater number of food patches when feeding from liana leaves than when feeding from tree leaves. Our results suggest that these increases in foraging effort were related to the fact that lianas are mainly a source of leaves, and that liana patch size was probably smaller than tree patch size. While these results were clear when analyzing all four groups combined, however, they were not always significant in each of the groups individually. We suggest that this may be related to the differences in group size, patch size and the availability of resources among groups. Further studies are necessary to assess whether these dietary and behavioral adjustments negatively impact on the fitness and conservation of primates in fragments.  相似文献   

3.
The effect of fruit availability on chimpanzee party size was investigated in the montane forest of Kahuzi. Seasonal variation in both fruit availability and party size was examined. Fruit abundance per se does not affect chimpanzee party size. However, seasonality and distribution patterns of fruits are both determinant ecological factors that control the size of chimpanzee parties at Kahuzi. There was no correlation between fruit abundance and the spatial distribution of fruits. When fruits were clumped and available in large amounts for a long period, chimpanzee party size increased, or otherwise decreased when fruits were highly available for only a limited period. Tree species that produced only a small amount of ripe fruit throughout the year did not affect the foraging party size of chimpanzees. Temporal and spatial variability in fruit abundance seems to constrain grouping patterns of chimpanzees at Kahuzi more so than in other chimpanzee habitats previously described.  相似文献   

4.
In tropical regions, rainfall gradients often explain the abundance and distribution of plant species. For example, many tree and liana species adapted to seasonal drought are more abundant and diverse in seasonally-dry forests, characterized by long periods of seasonal water deficit. Mean annual precipitation (MAP) is commonly used to explain plant distributions across climate gradients. However, the relationship between MAP and plant distribution is often weak, raising the question of whether other seasonal precipitation patterns better explain plant distributions in seasonally-dry forests. In this study, we examine the relationship between liana abundance and multiple metrics of seasonal and annual rainfall distribution to test the hypothesis that liana density and diversity increase with increasing seasonal drought along a rainfall gradient across the isthmus of Panama. We found that a normalized seasonality index, which combines MAP and the variability of monthly rainfall throughout the year, was a significant predictor of both liana density and species richness, whereas MAP, rainfall seasonality and the mean dry season precipitation (MDP) were far weaker predictors. The strong response of lianas to the normalized seasonality index indicates that, in addition to the total annual amount of rainfall, how rainfall is distributed throughout the year is an important determinant of the hydrological conditions that favor liana proliferation. Our findings imply that changes in annual rainfall and rainfall seasonality will determine the future distribution and abundance of lianas. Models that aim to predict future plant diversity, distribution, and abundance may need to move beyond MAP to a more detailed understanding of rainfall variability at sub-annual timescales.  相似文献   

5.
Chimpanzees (Pan troglodytes) are ecologically flexible omnivores with broad diets comprising many plant and animal foods, although they mostly eat fruit (including figs). Like other ecologically flexible nonhuman primates (e.g., baboons, Papio spp.) with broad diets, their diets vary across habitats. Much data on diets come from short studies that may not capture the range of variation, however, and data are scant on variation within habitats and populations. We present data on diet composition and diversity for chimpanzees at Ngogo, in Kibale National Park, Uganda, collected over a 15-year period, with a focus on the plant components of the diet. We compare Ngogo data to those on chimpanzees at the nearby Kibale site of Kanyawara, on other chimpanzee populations, and on some other frugivorous-omnivorous primates. Results support the argument that chimpanzees are ripe fruit specialists: Ngogo chimpanzees ate a broad, mostly fruit-based diet, feeding time devoted to fruit varied positively with fruit availability, and diet diversity varied inversely with fruit availability. Comparison of Ngogo and Kanyawara shows much similarity, but also pronounced within-population dietary variation. Chimpanzees fed much more on leaves, and much less on pith and stems, at Ngogo. Figs accounted for somewhat less feeding time at Ngogo, but those of Ficus mucuso were quantitatively the most important food. This species is essentially absent at Kanayawara; its abundance and high productivity at Ngogo, along with much higher abundance of several other important food species, help explain why chimpanzee community size and population density are over three times higher at Ngogo. High inter-annual variation at Ngogo highlights the value of long-term data for documenting the extent of ecological variation among chimpanzee populations and understanding how such variation might affect population biology and social dynamics.  相似文献   

6.
The aim of this study was to test for a correlation between party size and food (fruit) availability among the M group chimpanzees (Pan troglodytes) in the Mahale Mountains, Tanzania. Chimpanzee unit groups (or communities) show fission–fusion grouping patterns and form temporal parties. Fruit availability is assumed to be one of the important limiting factors in relation to the size of these parties. Different methods have been proposed to measure party size, but they all appear to focus mainly on two aspects of grouping phenomena. In “face-to-face parties”, party size is measured by scan sampling, whereas in “nomadic parties”, all members observed during a specific time period are counted. The mean monthly group size resulting from these two measures was compared with fruit availability, i.e. fruiting plant density and mean potential patch size. Nomadic party size was correlated with both values. Thus, party formation at this level was considered to be sensitive to overall fruit availability in the habitat. On the other hand, face-to-face party size remained stable and showed weak or no correlations with density and potential patch size. Although large patches are available during the peak fruiting season, Mahale chimpanzees depend on the liana species Saba comorensis, which, when fruiting, encourages individuals to spread out to eat. Thus, the lack of correlation between face-to-face-party size and fruit availability was attributed to the influence of physical limitations countervailing the fluctuation in fruit availability. Maximum face-to-face party size relative to unit-group size, regarded as the cohesiveness of a unit group, was compared among sites. The values differed largely: Mahale groups M and K, Bossou, and, in some years, Budongo, showed high cohesiveness, while others remained low. Thus, the distribution of the most important food during the fruiting season in each study site may be a crucial factor in the grouping phenomena of chimpanzees.  相似文献   

7.
This paper reports on the phenological patterns of figs in Budongo Forest, Uganda, and how it relates to chimpanzee food availability in different seasons. In addition, we analysed the dung of chimpanzees to understand the composition of fruits in their diet. The aim of our study was to assess Ficus phenology and how it affects chimpanzee diet. Fifteen species of figs were monitored for fruit (syconium) and leaf phenology between June 2000 and 2001. Ficus fruit production varied significantly between and within species, and also with tree trunk and crown diameters. Fig fruit production was asynchronous and individual fig trees produced crops from one to five times in a year. In addition to fruits, chimpanzees fed on young leaves of some Ficus species. Shedding of old Ficus leaves coincided with the dry season, followed by appearance of young leaves. The dry season in Budongo is a period of general fruit scarcity. The combination of fig fruits and young leaves make up the most important food in the diet of chimpanzees. From the chimpanzee dung, more than 78% of seeds comprised fig ‘seeds’ (nutlets) and the rest of the diaspores were from other tree species. Our findings suggest that chimpanzees disperse large number of diaspores in their dung, thereby serving as important agents of natural forest regeneration.  相似文献   

8.
Recent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana‐induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared the relative response of tropical lianas and trees to elevated CO2. We explicitly tested whether tropical lianas had a larger response to elevated CO2 than co‐occurring tropical trees and whether seasonal drought alters the response of either growth form. In two experiments conducted in central Panama, one spanning both wet and dry seasons and one restricted to the dry season, we grew liana (n = 12) and tree (n = 10) species in open‐top growth chambers maintained at ambient or twice‐ambient CO2 levels. Seedlings of eight individuals (four lianas, four trees) were grown in the ground in each chamber for at least 3 months during each season. We found that both liana and tree seedlings had a significant and positive response to elevated CO2 (in biomass, leaf area, leaf mass per area, and photosynthesis), but that the relative response to elevated CO2 for all variables was not significantly greater for lianas than trees regardless of the season. The lack of differences in the relative response between growth forms does not support the hypothesis that elevated CO2 is responsible for increasing liana size and abundance across the neotropics.  相似文献   

9.
We recorded 310 fresh chimpanzee night nests at 72 nest sites to determine their choice of tree and site for nesting vis-à-vis the effects of sympatric gorillas. Chimpanzees did not use trees for nesting according to their abundance, but instead tended to nest in fruit trees that they used as food sources. Nesting patterns of chimpanzees may vary with nesting group size, the type of vegetation, and fruit species eaten or not eaten by gorillas. When chimpanzees lodged as a small group in the secondary forest, they nested more frequently in trees bearing ripe fruits eaten only by themselves than in those with fruit eaten also by gorillas. When they lodged as a large group in the primary forest, they nested more frequently in trees bearing ripe fruits eaten by both apes. Nest group size is positively correlated with the availability of preferred ripe fruits in secondary forest. These findings not only reflect the larger foraging groups at the larger fruiting trees but also suggest that chimpanzees may have tended to occupy fruiting trees effectively by nesting in them and by forming large nest groups when the fruits attracted gorillas. Competition over fruits between gorillas and chimpanzees, due to their low productivity in the montane forest of Kahuzi, may have promoted the chimpanzee tactics.  相似文献   

10.
木质藤本是森林生态系统的重要组分。本研究在元江干热河谷地区随机设置了30个20 m×20 m的样方,调查样方中胸径≥0.5 cm的木质藤本多样性及其与宿主树木之间的关系。结果显示:30个样方中记录到胸径≥0.5 cm的木质藤本植物共945株(隶属于22种20属11科),其中,豆科木质藤本的丰富度和多度最高;胸径≤2 cm的木质藤本占个体总数的63.7%;茎缠绕类木质藤本的个体数最多。样方中胸径≥5 cm的树木共有1060株(隶属于38种31属16科),36.0%的树木上至少附藤1株。不同径级和不同树皮粗糙度的树木被木质藤本侵扰的百分比之间存在极显著差异(P0.001)。随着宿主树木平均枝下高的增加,附藤率呈下降趋势。76.5%的木质藤本选择离其根生长点最近的树木进行攀援。表明元江干热河谷中的木质藤本以小径级占优势,树木胸径、枝下高、树皮粗糙度和木质藤本根生长点到树木的距离是影响木质藤本侵扰树木的重要因素,支持木质藤本对宿主树木的侵扰具有选择性的假说。研究结果对中国西南干热河谷退化植被的恢复与物种多样性保护具有重要意义。  相似文献   

11.
Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution – critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests.  相似文献   

12.
Almost all primates experience seasonal fluctuations in the availability of key food sources. However, the degree to which this fluctuation impacts foraging behavior varies considerably. Eastern chimpanzees (Pan troglodytes schweinfurthii) in Nyungwe National Park, Rwanda, live in a montane forest environment characterized by lower primary productivity and resource diversity than low‐elevation forests. Little is known about chimpanzee feeding ecology in montane forests, and research to date predominantly relies on indirect methods such as fecal analyses. This study is the first to use mostly observational data to examine how seasonal food availability impacts the feeding ecology of montane forest chimpanzees. We examine seasonal changes in chimpanzee diet and fallback foods (FBFs) using instantaneous scan samples and fecal analyses, supported by inspection of feeding remains. Chimpanzee fruit abundance peaked during the major dry season, with a consequent change in chimpanzee diet reflecting the abundance and diversity of key fruit species. Terrestrial herbaceous vegetation was consumed throughout the year and is defined as a “filler” FBF. In contrast to studies conducted in lower‐elevation chimpanzee sites, figs (especially Ficus lutea) were preferred resources, flowers were consumed at seasonally high rates and the proportion of non‐fig fruits in the diet were relatively low in the current study. These divergences likely result from the comparatively low environmental diversity and productivity in higher‐elevation environments.  相似文献   

13.
Lianas reduce tree growth, reproduction, and survival in tropical forests. Liana competition can be particularly intense in isolated forest fragments, where liana densities are high, and thus, host tree infestation is common. Furthermore, lianas appear to grow particularly well during seasonal drought, when they may compete particularly intensely with trees. Few studies, however, have experimentally quantified the seasonal effects of liana competition on multiple tree species in tropical forests. We used a liana removal experiment in a forest fragment in southeastern Brazil to test whether the effects of lianas on tree growth vary with season and tree species identity. We conducted monthly diameter measurements using dendrometer bands on 88 individuals of five tree species for 24 months. We found that lianas had a stronger negative effect on some tree species during the wet season compared to the dry season. Furthermore, lianas significantly reduced the diameter growth of two tree species but had no effect on the other three tree species. The strong negative effect of lianas on some trees, particularly during the wet season, indicates that the effect of lianas on trees varies both seasonally and with tree species identity. Abstract in Portuguese is available with online material.  相似文献   

14.
Ecological niche models (ENMs) are often used to predict species distribution patterns from datasets that describe abiotic and biotic factors at coarse spatial scales. Ground‐truthing ENMs provide important information about how these factors relate to species‐specific requirements at a scale that is biologically relevant for the species. Chimpanzees are territorial and have a predominantly frugivorous diet. The spatial and temporal variation in fruit availability for different chimpanzee populations is thus crucial, but rarely depicted in ENMs. The genetic and geographic distinction within Nigeria–Cameroon chimpanzee (Pan troglodytes ellioti) populations represents a unique opportunity to understand fine scale species‐relevant ecological variation in relation to ENMs. In Cameroon, P. t. ellioti is composed of two genetically distinct populations that occupy different niches: rainforests in western Cameroon and forest–woodland–savanna mosaic (ecotone) in central Cameroon. We investigated habitat variation at three representative sites using chimpanzee‐relevant environmental variables, including fruit availability, to assess how these variables distinguish these niches from one another. Contrary to the assumption of most ENM studies that intact forest is essential for the survival of chimpanzees, we hypothesized that the ecotone and human‐modified habitats in Cameroon have sufficient resources to sustain large chimpanzee populations. Rainfall, and the diversity, density, and size of trees were higher at the rainforest. The ecotone had a higher density of terrestrial herbs and lianas. Fruit availability was higher at Ganga (ecotone) than at Bekob and Njuma. Seasonal variation in fruit availability was highest at Ganga, and periods of fruit scarcity were longer than at the rainforest sites. Introduced and secondary forest species linked with anthropogenic modification were common at Bekob, which reduced seasonality in fruit availability. Our findings highlight the value of incorporating fine scale species‐relevant ecological data to create more realistic models, which have implications for local conservation planning efforts.  相似文献   

15.
Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects soil moisture and hence competition with trees for water in tropical forests. To address this critical knowledge gap, we conducted a large-scale liana removal experiment in a seasonal tropical moist forest in central Panama. We monitored shallow and deep soil moisture over the course of three years to assess the effects of lianas in eight 0.64 ha removal plots and eight control plots. Liana removal caused short-term effects in surface soils. Surface soils (10 cm depth) in removal plots dried more slowly during dry periods and accumulated water more slowly after rainfall events. These effects disappeared within four months of the removal treatment. In deeper soils (40 cm depth), liana removal resulted in a multi-year trend towards 5–25% higher soil moisture during the dry seasons with the largest significant effects occurring in the dry season of the third year following treatment. Liana removal did not affect surface soil temperature. Multiple and mutually occurring mechanisms may be responsible for the effects of liana removal on soil moisture, including competition with trees, and altered microclimate, and soil structure. These results indicate that lianas influence hydrologic processes, which may affect tree community dynamics and forest carbon cycling.  相似文献   

16.
Frugivory patterns of the chimpanzees in the Budongo Forest Reserve, Uganda were studied between June 2000 and August 2001. Chimpanzee feeding habitats, movement, group size and food eaten were assessed using focal and scan sampling. It was found that fruits were scarce during the dry season, when chimpanzees appeared and moved in large groups over long distances and raided farms at the forest edge. Chimpanzee movement out of the forest to forage was influenced by seasonal fluctuations in availability of preferred foods as some cultivated crops are perennial. Presence of chimpanzees in a specific feeding habitat was related to the availability of edible fruits both within and between months, suggesting that the presence of food may influence chimpanzee movement patterns. Therefore, a good understanding of patterns of frugivory is essential for making informed decisions about conservation of chimpanzees and other frugivores like birds and monkeys in Budongo as different forest habitats are under varying human pressure because of logging and other forms of utilization.  相似文献   

17.
Reproductive phenology of 171 plant species belonging to 57 families of angiosperms was studied according to life-forms in four habitat types in a savanna-forest mosaic on the Venezuelan Central Plain. Flowering, unripe fruit, and mature fruit patterns were affected significantly according to life-forms and habitats respectively. Production of flowers, unripe fruits, and mature fruits showed marked seasonality for all habitats except for the forest. Flowering peaked during the rainy season, and fruiting peaked toward the end of the rainy season. The savanna and the disturbed area had similar proportions of species that flowered over the year. The percentage of species with unripe fruits produced throughout the year was more seasonal for the disturbed area than for the other habitats. Mature fruit patterns showed an increase during the late rainy season for the ecotone and savanna. A large number of herbaceous (annual and perennial) and liana species flowered during the wet season, and a smaller fraction flowered during the dry season; and trees, shrubs, and epiphytes increased flowering activity during the dry season. Unripe fruit patterns were similar to those of flowering for all life-forms, however, tree species were less seasonal. Mature fruit production by shrubs peaked in the period of maximum rainfall, while the peak for perennial herbs was in the late rainy season and the peak for annual herbs was during the transition between the rainy season and the dry season. The largest proportion of tree and liana species with ripe fruits occurred during the dry season. Differences among phenological patterns in habitats were caused mainly by life-forms and promote a wider distribution of reproductive events in habitats and overall community in the Venezuelan Central Plain.  相似文献   

18.
We review the evidence in support of the hypotheses that (i) lianas are now increasing in tropical forests and (ii) lianas are more abundant in the drier tropical forests. There is good evidence to support both hypotheses, including a new analysis of data from Ghana. In this dataset, there is a linear increase in the percentage of species that are lianas, from 30% at a mean annual rainfall of 2,000 mm year−1 to 43% at a mean annual rainfall of 1,000 mm year−1. Both trends in lianas, one temporal, the other spatial, may be related to water availability, though parallel changes in canopy density (disturbance) may be contributory. It is also clear that most liana species in West Africa show restricted distribution along the rainfall gradient implying adaptation to different water availability. The reasons for the high sensitivity to rainfall may be that lianas have an especially effective water-transport system, with deep roots, large xylem vessels and a mechanism to avoid cavitation of water. As the climate of much of the tropics is becoming drier, we may expect increases in both liana abundance and their proportion in the flora over the future decades.  相似文献   

19.
I studied ranging patterns of a semihabituated unit-group of chimpanzees for 60 mo at Kahuzi. They had a total home range of 12.81 km2 and a mean annual home range of 7.55 km2. Considering the low density of chimpanzees in the area vis-à-vis chimpanzees in arid areas, their home range is very small. Kahuzi chimpanzees used the home range in a clumped pattern, frequently visiting the core area and only rarely entering peripheral areas. The monthly range changes with fruit availability, increasing during periods of fruit scarcity. There was no consistent seasonal difference in the size of the home range. However, use of different habitat types may vary seasonally. While there was no seasonal effect in the use of primary forest, the chimpanzees showed a statistically consistent seasonal difference in their use of secondary forest, visiting it mainly during the dry season when fig trees were in fruit. Since the primary forest provides them with more food fruits, chimpanzees tended to use more frequently the small patches of primary forest in their home range. Thus, the size and distribution of small fragmented primary forests may be an important factor influencing the ranging pattern of chimpanzees at Kahuzi.  相似文献   

20.
Highly frugivorous primates like chimpanzees (Pan trogolodytes) must contend with temporal variation in food abundance and quality by tracking fruit crops and relying more on alternative foods, some of them fallbacks, when fruit is scarce. We used behavioral data from 122 months between 1995 and 2009 plus 12 years of phenology records to investigate temporal dietary variation and use of fallback foods by chimpanzees at Ngogo, Kibale National Park, Uganda. Fruit, including figs, comprised most of the diet. Fruit and fig availability varied seasonally, but the exact timing of fruit production and the amount of fruit produced varied extensively from year to year, both overall and within and among species. Feeding time devoted to all major fruit and fig species was positively associated with availability, reinforcing the argument that chimpanzees are ripe fruit specialists. Feeding time devoted to figs-particularly Ficus mucuso (the top food)--varied inversely with the abundance of nonfig fruits and with foraging effort devoted to such fruit. However, figs contributed much of the diet for most of the year and are best seen as staples available most of the time and eaten in proportion to availability. Leaves also contributed much of the diet and served as fallbacks when nonfig fruits were scarce. In contrast to the nearby Kanywara study site in Kibale, pith and stems contributed little of the diet and were not fallbacks. Fruit seasons (periods of at least 2 months when nonfig fruits account for at least 40% of feeding time; Gilby & Wrangham., Behavioral Ecology and Sociobiology 61:1771-1779, 2007) were more common at Ngogo than Kanyawara, consistent with an earlier report that fruit availability varies less at Ngogo [Chapman et al., African Journal of Ecology 35:287-302, 1997]. F. mucuso is absent at Kanyawara; its high density at Ngogo, combined with lower variation in fruit availability, probably helps to explain why chimpanzee population density is much higher at Ngogo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号