首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current evidence is inconclusive regarding the point of signaling convergence downstream from different members of the phytochrome family. In transgenic Arabidopsis, the activity of a reporter enzyme under the control of the -453 to +67 fragment of an Lhcb1*2 promoter shows very low fluence responses (VLFRs) and high-irradiance responses (HIRs) mediated by phytochrome A and low-fluence responses (LFRs) mediated by phytochrome B. A 5' deletion of the promoter to -134 abolished the HIR without affecting VLFR or LFR. In transgenic tobacco, VLFR and LFR were observed for the -176 to -31 or -134 to -31 fragments of Lhcb1*2 fused to 35S cauliflower mosaic virus minimal promoters, but only the largest fragment showed HIR. We propose that sustained activation of phytochrome A with far-red light initiates a signaling cascade that deviates from phytochrome B signaling and transient phytochrome A signaling and that this divergence extends as far as the Lhcb1*2 promoter.  相似文献   

2.
3.
We have used a counter-selection strategy based on aberrant phytochrome regulation of an Lhcb gene to isolate an Arabidopsis mutant designated shygrl1 (shg1). shg1 seedlings have reduced phytochrome-mediated induction of the Lhcb gene family, but normal phytochrome-mediated induction of several other genes, including the rbcS1a gene. Additional phenotypes observed in shg1 plants include reduced chlorophyll in leaves and additional photomorphogenic abnormalities when the seedlings are grown on medium containing sucrose. Mutations in the TATA-proximal region of the Lhcb1*3 promoter that are known to be important for phytochrome regulation affected reporter gene expression in a manner similar to the shg1 mutation. Our results are consistent with the possibility that the mutation either leads to defective chloroplast development or to aberrant phytochrome regulation. They also add to the evidence of complex interactions between light- and sucrose-regulated pathways.  相似文献   

4.
5.
Extended dark treatments of light-grown plants of both Lemna gibba and Arabidopsis thaliana resulted in substantial increases in abscisic acid (ABA) concentrations. The concentration of ABA could be negatively regulated by phytochrome action in Lemna. As has been noted in other species, ABA treatment reduced Lemna rbcS and Lhcb RNA levels, which are positively regulated by phytochrome in many species. In view of these observations, the possibility that phytochrome effects on gene expression may be mediated primarily by changes in ABA was tested using a transient assay in intact plants. The phytochrome responsiveness of the Lemna Lhcb2*1 promoter was still apparent in the presence of exogenous ABA. Additionally, when 2-bp mutations were introduced into this promoter so that phytochrome responsiveness was lost, a response to exogenous ABA was still present. We conclude that phytochrome- and ABA-response elements are separable in the Lhcb2*1 promoter. We tested whether the effects of ABA on RNA abundance could be inhibited by treatment with gibberellin and found no evidence for such an inhibition. We have also found that the ABA-responsive Em promoter of wheat can be negatively regulated by phytochrome action. It is likely that this regulation is mediated at least in part by phytochrome-induced changes in ABA levels. Our results demonstrate that it is essential to take into account that dark treatments and the phytochrome system can affect ABA levels when interpreting studies of light-regulated genes.  相似文献   

6.
7.
8.
9.
10.
11.
In plants, development is a continuing process that takes place under strong fluctuations of the light environment. Here we show that in Arabidopsis thaliana plants grown under intense white light, coupling of the photoreceptor cryptochrome 2 to developmental processes is broader than previously appreciated. Compared to the wild type, the cry2 mutant showed reduced activity of a Lhcb1*2 promoter fused to a reporter, and delayed flowering. The cry2 mutation also reduced the inhibition of hypocotyl growth, the unfolding of the cotyledons, the rate of leaf production during the vegetative phase, and the pace of development after transition to the reproductive stage; but these effects were obvious only in the absence of cryptochrome 1 and in some cases phytochrome A and/or phytochrome B. Complementary, the cry2 mutation uncovered novel roles for cryptochrome 1 and phytochrome A. The activity of the Lhcb1*2 promoter was higher in the cry1 cry2 mutant than in the cry2 mutant, suggesting that cry1 could be involved in blue-light repression of photosynthetic genes. Surprisingly, the phyA cry1 cry2 triple mutant flowered earlier and showed better response to photoperiod than the cry1 cry2 double mutant, indicating that phyA is involved in light repression of flowering. Growth and development were severely impaired in the quadruple phyA phyB cry1 cry2 mutant. We propose that stability and light modulation of development are achieved by simultaneous coupling of phytochrome A, phytochrome B, cryptochrome 1 and cryptochrome 2 to developmental processes, in combination with context-dependent hierarchy of their relative activities.  相似文献   

12.
拟南芥GHMP基因家族成员的组织表达及生物信息学分析   总被引:1,自引:0,他引:1  
利用生物信息学方法获得拟南芥全基因组中12个GHMP基因家族成员。通过实时定量PCR技术研究这12个基因在不同组织中的表达,结果显示它们具有组织表达特异性。构建了拟南芥中GHMP基因家族成员的系统进化树。启动子区调控元件分析表明,大多数GHMP成员包含有光响应、生物钟及其它逆境胁迫响应的相关元件,预测这些GHMP基因家族成员可能参与了植物的光信号、生物钟及相关的逆境胁迫信号转导途径。  相似文献   

13.
Phytochrome A (phyA) and phytochrome B (phyB) share the control of many processes but little is known about mutual signaling regulation. Here, we report on the interactions between phyA and phyB in the control of the activity of an Lhcb1*2 gene fused to a reporter, hypocotyl growth and cotyledon unfolding in etiolated Arabidopsis thaliana. The very-low fluence responses (VLFR) induced by pulsed far-red light and the high-irradiance responses (HIR) observed under continuous far-red light were absent in the phyA and phyA phyB mutants, normal in the phyB mutant, and reduced in the fhy1 mutant that is defective in phyA signaling. VLFR were also impaired in Columbia compared to Landsberg erecta. The low-fluence responses (LFR) induced by red-light pulses and reversed by subsequent far-red light pulses were small in the wild type, absent in phyB and phyA phyB mutants but strong in the phyA and fhy1 mutants. This indicates a negative effect of phyA and FHY1 on phyB-mediated responses. However, a pre-treatment with continuous far-red light enhanced the LFR induced by a subsequent red-light pulse. This enhancement was absent in phyA, phyB, or phyA phyB and partial in fhy1. The levels of phyB were not affected by the phyA or fhy1 mutations or by far-red light pre-treatments. We conclude that phyA acting in the VLFR mode (i.e. under light pulses) is antagonistic to phyB signaling whereas phyA acting in the HIR mode (i.e. under continuous far-red light) operates synergistically with phyB signaling, and that both types of interaction require FHY1.  相似文献   

14.
15.
16.
Blue-Light Regulation of the Arabidopsis thaliana Cab1 Gene   总被引:12,自引:5,他引:7       下载免费PDF全文
Gao J  Kaufman LS 《Plant physiology》1994,104(4):1251-1257
  相似文献   

17.
18.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

19.
20.
The levels of Lhcb mRNA in higher plants are regulated by phytochrome, cryptochrome, and an endogenous circadian oscillator. To determine whether similar regulatory mechanisms operate in the ancient gymnosperm Ginkgo biloba, we measured Lhcb mRNA levels in seedlings in response to different light conditions. Removal of a diurnally oscillating light stimulus caused dampening of maximal Lhcb mRNA accumulation levels, with little change in periodicity. Although low fluence pulses of both red and blue light given to etiolated seedlings caused maximal accumulation of Lhcb mRNAs characteristic of the phasic/circadian response seen in flowering plants, the additional initial acute response seen in flowering plants was absent. The induction of Lhcb gene expression in both cases was at least partially reversible by far-red light, and appeared biphasic over a range of red fluences. Together, these data indicate that Lhcb genes in G. biloba appear to be regulated in a manner similar to that of flowering plants, whereas signaling and attenuation of mRNA levels through the photoreceptor systems and circadian clock show features distinct from those characterized to date. The implications for these findings are discussed in light of the evolution of circadian clock input signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号