首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Intervening sequences (IVSs) were originally identified in the rrl genes for 23S rRNA (rrl genes, for large ribosomal subunit, part of rrn operon encoding rRNA) of Salmonella enterica serovars Typhimurium LT2 and Arizonae. These sequences are transcribed but later removed during RNase III processing of the rRNA, resulting in fragmentation of the 23S species; IVSs are uncommon, but have been reported in at least 10 bacterial genera. Through PCR amplification of IVS-containing regions of the rrl genes we showed that most Proteus and Providencia strains contain IVSs similar to those of serovar Typhimurium in distribution and location in rrl genes. By extraction and Northern blotting of rRNA, we also found that these IVSs result in rRNA fragmentation. We report the first finding of two very different sizes of IVS (113 bp and 183 to 187 bp) in different rrl genes in the same strain, in helix 25 of Proteus and Providencia spp.; IVSs from helix 45 are 113 to 123 bp in size. Analysis of IVS sequence and postulated secondary structure reveals striking similarities of Proteus and Providencia IVSs to those of serovar Typhimurium, with the stems of the smaller IVSs from helix 25 being similar to those of Salmonella helix 25 IVSs and with both the stem and the central loop domain of helix 45 IVSs being similar. Thus, IVSs of related sequences are widely distributed throughout the Enterobacteriaceae, in Salmonella, Yersinia, Proteus, and Providencia spp., but we did not find them in Escherichia coli, Citrobacter, Enterobacter, Klebsiella, or Morganella spp.; the sporadic distribution of IVSs of related sequence indicates that lateral genetic transfer has occurred.  相似文献   

2.
The rrl genes for 23S rRNA of Salmonella typhimurium LT2 are known to carry intervening sequences (IVSs) at two sites, helix-25 and helix-45, which are excised by RNase III during rRNA maturation, resulting in rRNA which is fragmented but nevertheless functional. We isolated DNA fragments containing the seven rrl genes from BlnI, I-CeuI, and SpeI genomic digests following pulsed-field gel electrophoresis and used these DNA fragments as templates for PCRs utilizing primers upstream and downstream of helix-25 and helix-45. Variance in amplicon length and cycle sequencing indicated that rrlG and rrlH have IVSs in helix-25 of approximately 110 bp which are only 56% identical. rrnA, rrnB, rrnC, rrnD, rrnE, and rrnH have IVSs of approximately 90 bp in helix-45, and all have the same nucleotide sequence. Twenty-one independent wild-type strains of S. typhimurium from Salmonella Reference Collection A were analyzed for IVSs by using PCRs with genomic DNAs and by denaturing agarose electrophoresis of RNAs. Many strains resemble LT2, but some have no IVSs in helix-25 and others have IVSs in helix-45 in all seven rrl genes. However, the IVSs in individual wild-type lines are relatively stable, for several LT2 isolates separated over many years by many single-colony isolations are indistinguishable from one another, with the exception of line LB5010, which differs by one helix-25 IVS. We postulate that IVSs have entered strain LT2 by three independent lateral-transfer events and that the IVS in helix-45 was dispersed to and maintained in the same sequence in six of the seven rrl genes by the mechanism of gene conversion.  相似文献   

3.
Salmonella typhimurium LT2 contains intervening sequences (IVSs) of 90–110 nt within all its 23S rRNA that are cleaved out by RNase III, resulting in rRNA fragmentation. In order to determine the functionality of 23S rRNA that contains unexcised IVSs, we constructed an S. typhimurium RNase III (rnc) deficient strain by transducing a mini-Tn10 (rnc-14::Tn10) from Escherichia coli K-12. The resulting strain of S. typhimurium was viable, contained IVSs within all of its 23S rRNA, and showed a growth reduction similar to that observed for the RNase III deficient strain of E. coli. These results indicate that ribosomes containing 23S rRNA in which IVSs are not excised are functional in translation, and make it unlikely that RNase III excision of IVSs from strain LT2 23S rRNA is dictated by a selective pressure to uphold the functional integrity of ribosomes.  相似文献   

4.
5.
Pabbaraju K  Sanderson KE 《Gene》2000,253(1):55-66
Intervening sequences (IVSs) occur sporadically in the rrl (ribosomal RNA large) genes for 23S ribosomal RNA (rRNA) at helix-25 (base pair 550) and helix 45 (base pair 1170) in several bacterial genera, including Salmonella, Yersinia, Proteus, and Providencia, representing the Enterobacteriaceae, but are missing from other genera such as Escherichia. These sequences are transcribed, but later excised without re-ligation during RNaseIII processing of the rRNA, resulting in fragmented 23S rRNA. The IVSs from 22 strains of the SARB (Salmonella Reference Collection B) set were amplified by PCR and sequenced.IVSs with 90% or more sequence identity were placed in the same family; Salmonella has three families of IVSs in helix-25 (A, B, and C) and two in helix-45 (M and O). The rRNA secondary structure for the IVSs predicted from the mfold program reveals a primary stem of about 14bp, which is the postulated RNaseIII cleavage site, and a secondary region of stems and loops. The primary stem is considerably well conserved, with a high rate of compensatory mutations (positional covariants), confirming the reality of the secondary structure and indicating that removal of the IVSs exerts a positive selective pressure to retain the secondary structure. The pattern of possession and presence of families of IVSs was diverse and could not be related to the proposed ancestry of the strains as revealed by the multi-locus enzyme electrophoresis pattern of the strains, suggesting that the IVSs are transferred between strains by lateral transfer. Helix-25 IVSs from families A, B, and C of Salmonella and D of Proteus, which share almost identical primary stems, are placed in superfamily I, while the primary stems of other IVSs from Proteus and Providencia are unrelated to superfamily I and are thus placed into superfamily II; this indicates lateral transfer of members of superfamily I between Proteus and Salmonella, but an independent origin of IVSs of superfamily II in Proteus and Providencia.  相似文献   

6.
The excision of intervening sequences from Salmonella 23S ribosomal RNA   总被引:31,自引:0,他引:31  
A B Burgin  K Parodos  D J Lane  N R Pace 《Cell》1990,60(3):405-414
Novel, approximately 90 bp intervening sequences (IVs) were discovered within the 23S rRNA genes of S. typhimurium and S. arizonae. These non-rRNA sequences are transcribed and then excised during rRNA maturation. The rRNA fragments that result from the excision of the extra sequences are not religated. This results in fragmented 23S rRNAs. The excision of one IVS was shown to be catalyzed in vivo and in vitro by ribonuclease III. These IVSs are highly volatile evolutionarily, sometimes occurring in only some of the multiple rRNA operons of a particular cell. The sporadic nature of the occurrence of fragmented rRNAs among closely related organisms argues that such fragmentation is a derived state, not a primitive one. Possible sources of these IVSs, their parallels with internal transcribed spacers and introns in eukaryotes, and their possible roles in the evolutionary process are discussed.  相似文献   

7.
G Afseth  Y Y Mo    L P Mallavia 《Journal of bacteriology》1995,177(10):2946-2949
Characterization of the rRNA operon from the obligate intracellular bacterium Coxiella burnetii has determined the order of the rRNA genes to be 16S-23S-5S. A 444-bp intervening sequence (IVS) was identified to interrupt the 23S rRNA gene beginning at position 1176. The IVS is predicted to form a stem-loop structure formed by flanking inverted repeats, and the absence of intact 23S rRNA molecules suggests that the loop is removed. An open reading frame in the IVS has been identified that shows 70% similarity at the amino acid level to IVS open reading frames characterized from four species of Leptospira.  相似文献   

8.
Rische T  Klug G 《RNA biology》2012,9(3):343-350
The essential processing of ribosomal rRNA precursors requires concerted and sequential cleavages by different endo- and exoribonucleases. Despite long lasting investigations of these processes the exact order of steps remained elusive. Many bacteria perform additional rRNA processing steps by removing intervening sequences within the 23S rRNA. This leads to disintegration of the 23S rRNA and discontinuously assembled fragments within the ribosomes. The maturation of these fragments also requires successive cleavage events by different RNases. Our study reveals that the 5'-to-3' exoribonuclease RNase J is responsible for the final 5'-end maturation of all three 23S rRNA fragments in the α-proteobacterium Rhodobacter sphaeroides. Additionally the results show that 5'- and 3'-processing steps are closely coupled: mature 5'-ends are a strict prerequisite for the final 3'-trimming of the 23S rRNA fragments.  相似文献   

9.
Although the absence of intervening sequences (IVSs) within the 23S rRNA genes in Campylobacter lari isolates has been described, there are apparently no reports regarding correlations between the nucleotide sequences of 23S rRNA genes and erythromycin (Ery) susceptibility in C. lari isolates. Here, we determined the minimum inhibitory concentrations of 35 C. lari isolates [n?=?19 for urease-positive thermophilic Campylobacter (UPTC); n?=?16 urease-negative (UN) C. lari] obtained from Asia, Europe, and North America. We found that the 18 isolates were resistant to the Ery (defined as ≧8 μg/mL), and three isolates, UPTC A1, UPTC 92251, and UPTC 504, showed increased resistance (16 μg/mL). No correlations between the IVSs in the helix 45 region within the 23S rRNA gene sequences and Ery resistance were identified in the C. lari isolates examined. In addition, no point mutations occurred at any expected or putative position within the V domain in the isolates. In conclusion, antibiotic resistance against the macrolide erythromycin is mediated through an alternative pathway to that described above.  相似文献   

10.
11.

Background  

Identification and characterization of intervening sequences (IVSs) within 23S rRNA genes from Campylobacter organisms including atypical campylobacters were carried out using two PCR primer pairs, designed to generate helix 25 and 45 regions.  相似文献   

12.
The phylogenetic relationship among twelve Agrobacterium, four Rhizobium, and two Sinorhizobium strains originating from various host plants and geographical regions was studied by analysis of the 23S rDNA sequences. The study included Agrobacterium strains belonging to biovars 1, 2 (with tumor- or hairy-root inducing and non-pathogenic strains), A. vitis, A. rubi; representative species of the Rhizobium genus: R. galegae, R. leguminosarum and R. tropici and Sinorhizobium meliloti strains. The phylogenetic analysis showed that within Agrobacterium, the biovar designation was reflected in the 23S rDNA similarity and that strains of Agrobacterium and Rhizobium are closely related to each other. The results suggest that the taxonomic definition of Agrobacterium and Rhizobium should be considered for revision and that the Agrobacterium-biovar identity is probably a reliable taxonomic trait.  相似文献   

13.
14.
15.
The 23S ribosomal RNA (rRNA) was shown to be in two fragments in pathogenic Yersinia enterocolitica. The cleavage site in the structural gene of the 23S rRNA was occupied by an intervening sequence (IVS) of about 100 nucleotides, analogous to IVSs found in salmonellae (Burgin et al., 1990). Nucleotide sequences of IVSs of several Y. enterocolitica strains revealed that the IVSs of the highly virulent Y. enterocolitica serotypes strains, and the IVS of Salmonella typhimurium were about 90% similar. On the other hand, the IVSs of the highly and the poorly virulent Y. enterocolitica serotypes were only about 60% similar. These results give the impression that at some point during the IVS evolution, the highly virulent Y. enterocolitica and S. typhimurium both received their IVSs at about the same time from the same source, and that the poorly virulent serotypes received their IVSs earlier. We also found that strain LB5010, derived by extended mutagenization of S. typhimurium LT2, had lost the IVSs originally present in LT2, and that this loss had created a new 'hairpin loop' which substituted for the original 'hairpin loop'.  相似文献   

16.
The 23S ribosomal RNA (rRNA) gene has been sequenced in strains of the fish pathogens Photobacterium damselae subsp. damselae (ATCC 33539) and subsp. piscicida (ATCC 29690), showing that 3 nucleotide positions are clearly different between subspecies. In addition, the 5S rRNA gene plus the intergenic spacer region between the 23S and 5S rRNA genes (ITS-2) were amplified, cloned and sequenced for the 2 reference strains as well as the field isolates RG91 (subsp. damselae) and DI21 (subsp. piscicida). A 100% similarity was found for the consensus 5S rRNA gene sequence in the 2 subspecies, although some microheterogeneity was detected as inter-cistronic variability within the same chromosome. Sequence analysis of the spacer region between the 23S and 5S rRNA genes revealed 2 conserved and 3 variable nucleotide sequence blocks, and 4 different modular organizations were found. The ITS-2 spacer region exhibited both inter-subspecies and intercistronic polymorphism, with a mosaic-like structure. The EMBL accession numbers for the 23S, 5S and ITS-2 sequences are: P. damselae subsp. piscicida 5S gene (AJ274379), P. damselae subsp. damselae 23S gene (Y18520), subsp. piscicida 23S gene (Y17901), P. damselae subsp. piscicida ITS-2 (AJ250695, AJ250696), P. damselae subsp. damselae ITS-2 (AJ250697, AJ250698).  相似文献   

17.
18.
B Allet  J D Rochaix 《Cell》1979,18(1):55-60
All of the chloroplast 23S ribosomal genes of C. reinhardii are interrupted by a 0.87 kb sequence (Rochaix and Malnoë, 1978). We have sequenced the DNA across the two ends of this intervening element. In parallel, we have examined the nucleotide sequences in the corresponding part of the 23S ribosomal RNA. This allowed us to locate precisely the boundaries between the coding (that is, transcribed into mature 23S rRNA) and the noncoding DNA. The results show that the intervening sequence is flanked by two identical sets of 3 bp (5′-CGT) oriented as direct repeats. In addition, a sequence of 5 bp (5′-CGTGA) lies exactly next to one end and is found very close (16 bp) to the other end, in the coding part of the gene. These two sets are also oriented as direct repeats. Finally, sequences near one end of the intervening element are found with a few alterations near the other end, but in an inverted orientation. Possible interpretations of these results are discussed.  相似文献   

19.
20.
Summary In order to study the organization of the ribosomal RNA genes of Mycoplasma hyopneumoniae the rRNA genes were cloned in phage vectors EMBL3 and EMBL4. By subcloning the restriction fragments into various plasmids and analysing the resulting clones by Southern and Northern blot hybridization, a restriction map of the rRNA genes was generated and the organization of the rRNA genes was determined. The results show that the genes for the 16S and 23S rRNAs are closely spaced and occur only once in the genome, whereas the 5S rRNA gene is separated from the other two genes by more than 4 kb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号