首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First data from a pollen survey carried out in the city of Murcia (SE Spain) are given in this paper. Using a Burkard Volumetric Spore Trap, daily slides were prepared and 80 pollen types belonging to 51 families andAlternaria spores were identified and counted. Special attention was paid to 14 relevant taxa: Cupressaceae,Pinus, Genisteae,Olea, Morus, Acer, Platanus, Plantago, Quercus, Urticaceae, Poaceae, Chenopodiaceae,Artemisia andAlternaria. The main sources of airborne particles wereAlternaria (27.7%), Cupressaceae (13.5%),Olea (9.36%), Chenopodiaceae (8.31%) and Urticaceae (5.8%). Annual variations in pollen abundance and length of the flowering seasons are given for individual species and are related to environmental factors. Results indicate a main pollen season from March to June and a second minor season in September to October. The relatively high concentrations of Genisteae and the appearance of anArtemisia winter season were noted.  相似文献   

2.
Pollen data reported from the two monitoring stations of Locarno-Monti, on the southern slopes of the Alps, and Zurich on the northern slopes of the Alps, for the years 1989–1993 were compared with meteorological data from the corresponding locations and with the prevalence of pollinosis and frequency of specific pollen sensitization in patients with pollinosis. It was so discovered that the recorded quantity of allergenic pollen types (Alnus, Corylus, Betula, Fraxinus, Poaceae, Castaneae,Olea andArtemisia) south of the Alps is higher by a factor of 2.9 than that north of the Alps. These differences are due to the distinctly milder climate in the canton of Ticino (south of the Alps) showing higher annual mean temperatures, more sunshine duration and less precipitation days with higher amounts of precipitation. The allergological data show additionally that the summer pollinosis, caused byCastanea andOlea, is probably responsible for the differing prevalence of pollinosis at the two sites. Finally, we can summarize that in Switzerland pollen from Poaceae, Betulaceae and Oleacea are the most important for pollinosis.  相似文献   

3.
Airborne pollen sampling in Toledo, Central Spain   总被引:2,自引:0,他引:2  
Toledo is one of the main tourist spots of Spain, attracting around two million visitors per year. Its geographical situation in the vast and scarcely monitored Region of Castilla La Mancha and the high number of tourists (especially in the spring) has resulted in the Spanish Aerobiology Network (REA) making this city a major study objective. Air monitoring studies carried out using REA sampling procedures commenced in October 2002. Thirty-two pollen types were identified during the sampling period (October 2002 to October 2004). The annual Pollen Index (PI) was 44124 for the agricultural year October 2002–October 2003, and 29666 in the same period of 2003–2004. The most abundant taxa were, in decreasing order of dominance: Cupressaceae, Quercus, Poaceae, Populus, Olea, Urticaceae, Platanus, Pinus and Ulmus. Other, less well-represented pollen taxa included Salix, Alnus, Fraxinus and Tamarix, which were characteristic of riverside areas, and Morus, Artemisia and Chenopodiaceae. The presence of Castanea pollen grains originating from chestnut crops far away from the city was clearly an example of long-distance transport. The highest concentrations of airborne pollen were detected from March to May and also in January, due to the flowering of Cupressaceae species. In general, there was a correlation between pollen and meteorological parameters: a positive correlation with temperature and a negative correlation with rainfall and humidity during the pre-peak period. A negative correlation between temperature and some tree pollen taxa was detected in the principal pollen period correlation analysis due to their long pollination periods.  相似文献   

4.
A semi-automatic system for pollen recognitionis studied for the european project ASTHMA. The goal of such a system is to provideaccurate pollen concentration measurements. This information can be used as well by thepalynologists, the clinicians or a forecastsystem to predict pollen dispersion. At first,our emphasis has been put on Cupressaceae, Olea, Poaceae and Urticaceae pollen types. The system is composed of two modules: pollengrain extraction and pollen grain recognition. In the first module, the pollen grains areobserved in light microscopy and are extractedautomatically from a pollen slide coloured withfuchsin and digitized in 3D. In the secondmodule, the pollen grain is analyzed forrecognition. To accomplish the recognition, itis necessary to work on 3D images and to usedetailed palynological knowledge. Thisknowledge describes the pollen types accordingto their main visible characteristerics and tothose which are important for recognition. Somepollen structures are identified like the porewith annulus in Poaceae, the reticulum in Oleaand similar pollen types or the cytoplasm inCupressaceae. The preliminary results show therecognition of some pollen types, likeUrticaceae or Poaceae or some groups of pollentypes, like reticulate group.  相似文献   

5.
A pollen analysis was carried out on six herbaceous pollen types whose annual concentration represents a percentage higher than 0.3% in the atmosphere of the city of La Plata, Argentina, from July 1998 to June 2001. They are: Ambrosia, Cyperaceae, Chenopodiaceae-Amaranthaceae, Plantago, Poaceae and Urticaceae. Hourly patterns of the pollen types analysed with the intradiurnal daily index (IDI) could be grouped into three categories account the percentage that represent of pollen concentration registered during five hourly periods of the day. Group I includes pollen types that show a sharp peak in abundance gust one at hour of the day. Group II is formed by pollen types that show high concentrations in more than one hourly band during the daylight. Group III is characterized by the pollen types that show lower concentrations over a broad hourly band during the day.  相似文献   

6.
Intradiurnal variation of allergenic pollen in the city of Porto (Portugal)   总被引:1,自引:1,他引:0  
This study reports the hourly distribution of the allergenic airborne pollen types more abundant in the atmosphere of Porto (Portugal) during the studied period. This knowledge will allow an adequacy daily routine for allergic patients during the hours of higher airborne concentrations. The airborne pollen concentration was continuously performed from January 2003 to December 2007 in the city of Porto using a Hirst-type volumetric sampler. Urticaceae, Cupressaceae, Acer spp., and Plantago spp. airborne pollen presented higher concentrations in the morning, while Alnus spp. and Betula spp. pollen were mainly present during the afternoon. Olea europaea and Platanus spp. pollen were regularly distributed along the day, while Poaceae and Pinus spp. pollen presented two diurnal maxima.  相似文献   

7.
The composition and seasonal distribution of airborne pollen grains in the atmosphere of Bahía Blanca, Argentina, has been studied between June 2001 and December 2003 using the Rotorod sampler (model 40). The results show that the main pollen types during this period were Cupressaceae, Fraxinus, Myrtaceae, Poaceae, Amaranthus/Chenopodiaceae, Pinus, Urticaceae, Ulmus, Olea and Styphnolobium. The highest concentrations occurred from August to December (end of winter and spring), accounting for 80% of the total annual pollen count. The greatest diversity was found in the spring, with the major of pollen coming from short-flowering plant types, such as Populus, Acer, Platanus, Juglans, Tamarix, Ailanthus and Typha. The potential sources of pollen from woody ornamental species are Cupressus sempervirens, Eucalyptus camaldulensis and Fraxinus pennsylvanica. whereas those from herbaceous species are the Chenopodiaceae and Poaceae, which are found within the city and also in the surrounding natural vegetation, and the Urticaceae, which are only present in the city. Marked annual differences were noted during the study period. The increase in 2002 may have been due to the abundant rainfall that occurred prior to the spring season, which would have favored the vegetative stage and flower development of plants. The decrease in pollen concentration in 2003 was mainly due to low rainfall throughout the year.  相似文献   

8.
Two of the most frequently used methods of pollen counting on slides from Hirst type traps are evaluated in this paper: the transverse traverse method and the longitudinal traverse method. The study was carried out during June–July 1996 and 1997 on slides from a trap at Worcester, UK. Three pollen types were selected for this purpose: Poaceae, Urticaceae and Quercus. The statistical results show that the daily concentrations followed similar trends (p < 0.01, R-values between 0.78–0.96) with both methods during the two years, although the counts were slightly higher using the longitudinal traverses method. Significant differences were observed, however, when the distribution of the concentrations during 24 hour sampling periods was considered. For more detailed analysis, the daily counts obtained with both methods were correlated with the total number of pollen grains for the taxon over the whole slide, in two different situations: high and low concentrations of pollen in the atmosphere. In the case of high concentrations, the counts for all three taxa with both methods are significantly correlated with the total pollen count. In the samples with low concentrations, the Poaceae and Urticaceae counts with both methods are significantly correlated with the total counts, but none of Quercus counts are. Consideration of the results indicates that both methods give a reasonable approximation to the count derived from the slide as a whole. More studies need be done to explore the comparability of counting methods in order to work towards a Universal Methodology in Aeropalynology. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The concentration of pollen grains in the air was studied using two aerobiological volumetric Hirst-type spore traps, one at ground level and the other at a height of 16 m on a terrace. The study was carried out between 2009 and 2011, from March to June in Badajoz (SW Spain). Intradiurnal and daily pollen counts were compared with both, different meteorological parameters and the distribution of local pollen sources. Forty-six pollen types were identified and 89 % of the total grains corresponded to Quercus, Poaceae, Olea, Pinaceae and Plantago pollen types, in descending order. The mean height ratio of the daily pollen count was 1.02. Significant correlations were observed when comparing daily pollen counts for predominant pollen types at both levels. The comparisons have shown significant differences in the daily pollen count between the two samplers in the case of Olea and Pinaceae, but not for Quercus, Poaceae and Plantago. Similar results were obtained using the intradiurnal airborne pollen database. No significant correlation has been found between pollen count and the different meteorological parameters, showing no dependence on height. These differences of Olea and Pinaceae may be explained in part by the uneven distribution of the pollen sources and the disturbance by nearby buildings. The temporal variation patterns between the two sites were similar; however, taking into account the average of the data, the higher values were obtained first at the ground level and later at 16 m.  相似文献   

10.
Volumetric data on airborne pollen have been gathered for two consecutive years at a neotropical location (Caracas). Among the 65 taxa which were identified, pollen from aCupressus species (introduced) and from aCecropia species (indigenous) were dominant. Less numerous but also abundant (daily averages ≥5 grains/m3 air) were pollen from Gramineae, Urticaceae,Alcalypha, Pinus, Piperaceae andMimosa. Pollen grains were recorded daily throughout the year. They increased in numbers during April–May and again during November–December. The first peak was contributed mainly by indigenous species, the second peak mainly by introduced species.  相似文献   

11.
During six consecutive years (1993–1998), aBurkard volumetric pollen trap was continuouslyoperated to sample pollen from the air of thecity of Murcia. The aim of the study was toelucidate the spectra of airborne pollen andthe variations during the year, and toelaborate a pollen calendar. This time spanincludes the end of the period with severedrought from 1990–1995, which particularly affected the south-eastern region of Spain.The total sum of daily average pollenconcentrations amounted to 148,645 pollen grainsbelonging to 93 different taxa. A daily averageof 74 pollen grains/m3 and 11 taxa wererecorded, with maxima of 1157 and 27respectively. The total pollen amountregistered in a year correlated with yearlyrainfall, but there was no relation with meanannual temperature. As for annual fluctuations,there seemed to be no influence by totalrainfall or temperature. Spring and winter werethe seasons with the highest pollen counts andpollen diversity.From the 93 identified taxa, 36 are included inthe pollen calendar. Noteworthy findings are:(i) the presence of Thymelaeaceae,Robinia, Betula, Castanea,Zygophyllum, Caryophyllaceae andCannabis, (ii) a long pollen season ofChenopodiaceae/Amaranthaceae, Urticaceae,Poaceae, Arecaceae and Plantago, (iii)the occurrence of summer, autumn and winterflowering of Artemisia, (iv) the lateappearance of Corylus pollen, and (v) theminor presence of Casuarina pollen duringthe mid winter and late spring.  相似文献   

12.
Pollen grains in the atmosphere of Bratislava were quantitatively and qualitatively analysed during an 8-year period (2002–2009) using a Burkard volumetric pollen trap. The mean annual total pollen grain count recorded during this period was 36,608, belonging to 34 higher plant taxa (22 trees and/or shrubs and 12 herbaceous species). The maximum annual total pollen grain count (50,563) was recorded in 2003 and the minimum (14,172) in 2009. The taxa contributing the highest concentration of pollen grains were Betula, Urticaceae, Cupressaceae-Taxaceae, Populus, Pinus, Poaceae and Ambrosia. During the study period, there was a remarkable increase in the number of pollen grains from February to April, with the highest daily mean pollen counts recorded in April. Total pollen concentration began to decrease markedly in May, but there was a second increase between July and August, followed by a decrease in September. The timing and length of the pollen seasons varied. Betula and Poaceae showed a rather constant 2-year fluctuating rhythm. The relationships between airborne pollen concentration and meteorological variables were assessed. Based on these results, the first pollen calendar in Slovakia has been constructed for the area of Bratislava, which provides a great deal of useful and important information.  相似文献   

13.

Respiratory allergies triggered by pollen allergens represent a significant health concern to the Irish public. Up to now, Ireland has largely refrained from participating in long-term aerobiological studies. Recently, pollen monitoring has commenced in several sampling locations around Ireland. The first results of the pollen monitoring campaigns for Dublin (urban) and Carlow (rural) concerning the period 2017–2019 and 2018–2019, respectively, are presented herein. Additional unpublished pollen data from 1978–1980 and, 2010–2011 were also incorporated in creating the first pollen calendar for Dublin. During the monitoring period over 60 pollen types were identified with an average Annual Pollen Integral (APIn) of 32,217 Pollen × day/m3 for Dublin and 78,411 Pollen × day/m3 for Carlow. The most prevalent pollen types in Dublin were: Poaceae (32%), Urticaceae (29%), Cupressaceae/Taxaceae (11%), Betula (10%), Quercus (4%), Pinus (3%), Fraxinus (2%), Alnus (2%) and Platanus (1%). The predominant pollen types in Carlow were identified as Poaceae (70%), Urticaceae (12%), Betula (10%), Quercus (2%), Fraxinus (1%) and Pinus (1%). These prevalent pollen types increased in annual pollen concentration in both locations from 2018 to 2019 except for Fraxinus. Although higher pollen concentrations were observed for the Carlow (rural) site a greater variety of pollen types were identified for the Dublin (urban) site. The general annual trend in the pollen season began with the release of tree pollen in early spring, followed by the release of grass and herbaceous pollen which dominated the summer months with the annual pollen season coming to an end in October. This behaviour was illustrated for 21 different pollen types in the Dublin pollen calendar. The correlation between ambient pollen concentration and meteorological parameters was also examined and differed greatly depending on the location and study year. A striking feature was a substantial fraction of the recorded pollen sampled in Dublin did not correlate with the prevailing wind directions. However, using non-parametric wind regression, specific source regions could be determined such as Alnus originating from the Southeast, Betula originating from the East and Poaceae originating from the Southwest.

  相似文献   

14.
Two methods of aerobiological collection, the Burkard(Hirst-based) and the Cour, were compared using datafrom pollen collected at Bellaterra (Barcelona, Spain)between 1994 and 1996. Results for three pollen taxaof allergenic relevance (Urticaceae, Poaceae andOlea) are presented. This study confirmed thedifficulty of finding a reliable conversion formulabetween these sampling methods, as has been found byseveral other authors.An alternative statistical analysis was carried outusing categorical data, the pollen concentration databeing first converted into an ordinal scale with fivelevels based on local records. Our analysis shows thatboth methods provide essentially the sameinformation.  相似文献   

15.
Vigo is a city located in the northwest of the Iberian Peninsula. Influenced by the Atlantic climate, it is surrounded by a Eurosiberian-type vegetation, modified by the introduction of forestry and ornamental species. Different ruderal vegetation types, resulting from human influence, grow in the area. The study of the pollen content of the air of Vigo started in 1989, with a Cour trap. Average results for the period 1989–1995 are presented in this paper, together with the lowest and highest values found. The representativeness of the mean values is analysed by calculating the coefficient of variation of the data series. Most pollen types in the atmosphere of Vigo are from tree species (54.2%); an important proportion comes from herb species (43.9%) and very few (1.8%) correspond to shrub species. A total of 73 different pollen types have been identified. The most abundant, listed in decreasing order of mean annual values for the period, are:Pinus (25.1%), Poaceae (21.1%), Urticaceae (14.6%),Quercus (8.5%),Castanea (3.7%),Betula (3.6%),Eucalyptus (3.4%),Plantago (3.2%),Alnus (2.1%), Cupressaceae (2.1%), Oleaceae (1.6%;Olea 1.3%),Platanus (1.3%),Rumex (1.3%), Chenopodiaceae/Amaranthaceae (1.0%), Ericaceae (0.8%), Asteraceae (0.6%;Artemisia 0.1% andTaraxacum type 0.2%) andMercurialis (0.5%). A pollen calendar showing the annual dynamics of all these pollen types is presented in this paper. A parallel study of the clinical importance of respiratory allergies in Vigo was also conducted. From a sample of 2750 patients, 87.2% suffered from rhinoconjunctivitis, 26.0% of these due to pollen, and 78.3% from asthma, 17.2% due to pollen. The pollen types responsible for these allergies, listed in decreasing order, are: Poaceae (78%),Parietaria (12%),Chenopodium (11%),Plantago (9%), Oak (4%),Artemisia (3%),Pinus (3%),Eucalyptus (3%),Olea (2%),Platanus (2%),Castanea (2%),Taraxacum (2%),Rumex (2%),Betula (1%),Cupressus (1%) andMercurialis (1%).  相似文献   

16.
A comparative study is presented of the pollen emissions of Urticaceae, Plantaginaceae and Poaceae, collected during 1995 with Hirst samplers (Burkard or Lanzoni) at five sites in western Spain: two Mediterranean sites located in the south (Huelva and Seville) and three Atlantic sites in the north (Orense, Vigo and Santiago). The annual pollen of Poaceae and Plantaginaceae collected in the Atlantic cities was found to be twice that in the Mediterranean sites, and the total amount of Urticaceae was higher at sites with an urban environment and subject to sea influence (Vigo, Huelva and Seville). At all the sites, the start of the main pollination periods (MPP) took place in the following order: Urticaceae, Plantaginaceae and Poaceae. It was also observed that the MPP of these three pollen types began earlier in Huelva and Seville, where the mean temperatures necessary for the beginning of pollen emissions are recorded very early. Regarding the variation in pollen concentrations throughout the year, Urticaceae presented peaks of maximum concentration in March (Huelva, Seville, Vigo and Orense) and June (Santiago); Plantaginaceae in March (south) and June (north); and Poaceae in May (south) and June–July (north). At northern sites, pollen emissions of Urticaceae and Plantaginaceae continued throughout the summer, while in the south they decreased considerably from May onwards. From the allergenic point of view, the indices of reactivity described for Urticaceae and Poaceae were exceeded more often at northern sites, in particular at Vigo. The meteorological conditions associated with periods of highest pollen emission of these three herbaceous types are a rise in mean temperature, light or absent rainfall, and abundant sunshine. The statistical correlations between pollen emissions and meteorological factors were not well-defined, either for the stations or for all the taxa, although they were clearer for the Atlantic cities and for Urticaceae.  相似文献   

17.
We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from different plant taxa prominent in the Thessaloniki area for a 4-year period (1996–1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, Corylus spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).  相似文献   

18.
The airborne pollen concentration in the city of Badajoz was measured in two locations 2.9 km apart. The measurements were taken from January to June between 2009 and 2012 using Hirst-type volumetric aerobiological samplers. One sampler was placed at the Faculty of Science (FS) and the other at the Agricultural Engineering School (AES) of the University of Extremadura, Spain, on terraces located 16 and 6 m above ground, respectively. The two sets of hourly and daily pollen concentrations were compared regarding the meteorological parameters and the distribution of local pollen sources. A total of 46 pollen types were counted, with a mean total concentration of 43 pollen grains/m³ in the winter and 336 pollen grains/m³ in the spring. In the winter, pollen grains from (in decreasing order) Cupressaceae, FraxinusPhillyrea, Urticaceae spp., Alnus glutinosa and Urtica membranacea types represented 77 % of the total. In the spring, 89 % of the total was represented by pollen grains from (in decreasing order) Quercus, Poaceae, Olea, Pinaceae and Plantago. The FS/AES ratio was 0.57 in the winter and 1.31 in the spring. While a Wilcoxon test applied to the daily total concentration data showed statistically significant differences between the two sites, a correlation study based on the Spearman coefficient showed statistically significant correlations in both the winter and spring. The results were similar when comparing the separate pollen types, except for Urticaceae spp., which showed no statistically significant correlation. The meteorological data studied showed a statistically significant correlation with the daily concentrations. A comparison of the hourly concentration data showed no correspondence with the time of maximum concentration. The local distribution of pollen sources explained some of the differences found between the two sites. Overall, the results indicate that a single aerobiological sampler may be sufficiently representative to register the daily pollen grain data of an urban area of approximately 3 km or greater in diameter, although it underestimates the influence of heterogeneity in the distribution of the local flora.  相似文献   

19.
A continuous aeropalynologic survey of the atmosphere of La Plata was carried out between July 1998 and June 2001 in order to study flowering development from winter to summer using a Lanzoni volumetric spore trap. The total pollen spectrum was represented by 79 pollen types. Between 10 and 12 pollen types showed a relative concentration of more than 1% of the annual total. Airborne pollen was mainly represented by Platanus, Fraxinus, Cupressaceae, Poaceae, Urticaceae, Cyperaceae, Myrtaceae, Celtis, Casuarina and Morus during the 3-year period. Acer and Ambrosia pollen types were only dominant in the first 2 years. Maximum absolute concentrations were recorded in the the July 1998–June 1999 period, and the minimum concentrations were recorded in the July 2000–June 2001 period. The contribution of the arboreal pollen grains was higher than 68% relative to the annual total for each year. Two periods of maximum pollen emissions were found for each year: pollen from aboreal taxa predominated from July to October, and pollen from herbaceous taxa predominated from November to March. There was very little pollen in the atmosphere between April and June. The maximum arboreal and herbaceous pollen emissions were recorded during hours of daylight: at 10:00 and 14:00 hours.  相似文献   

20.
The daily pollen concentration in the atmosphere of Badajoz (SW Spain) was analysed over a 6-year period (1993–1998) using a volumetric aerobiological trap. The results for the main pollination period are compared with the number of hours of wind each day in the four quadrants: 1 (NE), 2 (SE), 3 (SW) and 4 (NW). The pollen source distribution allowed 16 pollen types to be analysed as a function of their distribution in the four quadrants with respect to the location of the trap. Four of them correspond to species growing in an irrigated farmland environment (Amaranthaceae-Chenopodiaceae, Plantago, Scirpus, and Typha), five to riparian and woodland species (Salix, Fraxinus, Alnus, Populus, and Eucalyptus), four to urban ornamentals (Ulmus, Arecaceae, Cupressaceae, and Casuarina), and three which include the most frequent pollen grains of widely distributed species (Poaceae, Quercus, and Olea). The results show that the distribution of the sources and the wind direction play a very major role in determining the pollen concentration in the atmosphere when these sources are located in certain quadrants, and that the widely distributed pollen sources show no relationship with wind direction. In some years the values of the correlations were not maintained, which leads one to presume that, in order to draw significant conclusions and establish clear patterns of the influence of wind direction, a continuous and more prolonged study will be required. Received: 6 May 1999 / Revised: 30 March 2000 / Accepted: 31 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号