首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Summary The soleus, rectus femoris and gastrocnemius muscles of young rats were studied after 3, 6 and 12 weeks of treadmill training. The muscle fibers were characterized histochemically by their succinate dehydrogenase (SDH) and myofibrillar ATPase activity, and morphometrically by their cross-sectional areas, which were corrected for different body weights of control and trained animals.After 12 weeks of training the mean area of fibers in the muscles studied was not significantly different from the controls, as expected. In the soleus muscle the percentage of the fast-twitch fibers was decreased as a result of their transformation into slow-twitch fibers. Trained soleus muscles were the only muscles showing pathologically altered fibers, suggesting overload. The percentages of fiber types and their areas exhibited changes specific for the muscles and muscle regions studied.From these results it is concluded that the adaptation follows the sequence proportional adaptation of morphometrical parameters, disproportional adaptation of the areas of fiber types, and disproportional adaptation of the percentages and/or the areas of the fiber types. It is shown by comparison with the literature that this sequence may be generalized to a sequence of increasing expense necessary for the adaptation to increasing stimuli, and that the most decisive factors for adaptation are work load, frequency of exercise, period of training, and the age of the subject at the initiation of the training.  相似文献   

2.
Summary The three-dimensional structure and arrangement of mitochondria in the red, white and intermediate striated muscle fibers of the rat were examined under a field-emission type scanning electron microscope after removal of cytoplasmic matrices by means of the Osmium-DMSO-Osmium procedure.Beneath the sarcolemma, spherical or ovoid subsarcolemmal mitochondria show accumulations. The mitochondria are numerous and large in size in the red fibers, intermediate in the intermediate fibers, and few and small in the white fibers. Paired, slender I-band-limited mitochondria were located on both sides of the Z-line and partly embraced the myofibrils at the I-band level; they occurred in all three types of fibers. In the intermyofibrillar spaces, numerous mitochondria formed mitochondrial columns. These columns were classified into two types: 1) thick mitochondrial columns, formed by multiple mitochondria each with an intermyofibrillar space corresponding to one sarcomere in length, and 2) thin mitochondrial columns, established by single mitochondria corresponding to one sarcomere in length. In the red fibers mitochondrial columns were abundant and the ratio of the thick and thin columns was almost the same, while in the intermediate fibers most of the columns belonged to the thin type. The white fibers displayed rare, very thin columns.  相似文献   

3.
The distribution of capillaries in teleost and rat striated muscles was investigated using a number of different methods. A new method for directly viewing capillaries was developed. Teleost white muscle has a capillary: fibre (C:F) ratio of between 0.2 and 0.3; and 0.6 to 1.0 peripheral capillaries per muscle fibre. 26-49% of fibres had no peripheral capillaries. Values for the rat gastrocnemius were 1.2, 2.6 and 4.8% respectively which compares well with literature values. Flathead red muscle had a C:F ratio of between 1.9 and 2.5; and between 5.3 and 6.6 peripheral capillaries per muscle fibre depending on the method used. Values for rat soleus were 1.8 and 4.1 respectively. Teleost pink fibres had an intermediate number of capillaries. Rat striated muscle, particularly the gastrocnemius, was found to be heterogeneous with respect to the distribution of capillaries. Flathead red muscle was homogeneous whilst teleost white muscle was only slightly variable. Flathead red muscle fibres are well suppled with subsarcolemmal mitochondria. These show a clumped distribution corresponding to the position of capillaries. In contrast teleost white fibres are almost totally devoid of these and all other mitochondria. No differences were observed in the vascularisation of either muscle type along the length of the fish. The results are discussed in relation to the division of labour between fibre types during swimming.  相似文献   

4.
Transmission electron microscopy was used to study the ultrastructure of muscle spindles (encapsulated stretch receptors) in m. soleus of adult Wistar rats after repeated hindlimb unloading. It was shown that the unloaded soleus contained not only spindles with a typical number of intrafusal fibers (four) but also spindles with five or six fibers. The increase in the number of intrafusal fibers in muscle spindles of the unloaded animals is likely to be caused by the proliferation of their satellite cells (myoblasts).  相似文献   

5.
The morphology and the effect of an endurance training programme on tonic muscle fibres were studied in chub Leuciscus cephalus , by means of histochemistry and immunohistochemistry, electronmicroscopy and morphometry/stereology. Location and distribution, SDH- and mATPase-activity, reaction to an anti-tonic myosin antibody and ultrastructural features of the fibre type were investigated. With regard to training conditions, fibre size was not significantly affected. However, an increase in the volume densities of mitochondria, lipid and myofibrils can be observed, suggesting a training influence on the aerobic capacity of the so-called tonic muscle fibres. Based on the quantitative findings, the fine structure and the response to training, similarities with intermediate muscle fibres and the functional role of these so-called tonic muscle fibres are discussed.  相似文献   

6.
耐力运动对大鼠骨骼肌ERK1/2活性的影响   总被引:2,自引:0,他引:2  
目的:探讨耐力运动对大鼠骨骼肌蛋白总量(t-ERK1/2)及磷酸化ERK1/2(p-ERK1/2)及ERK2mRMA表达的影响。方法:SD大鼠随机分为对照组和运动组。运动组分为1h/d和1.5h/d组,共7周,运动结束后24h和48h取材,测定葡萄糖和胰岛素浓度;Westernblot法检测骨骼肌t-ERK1/2、p-ERK1/2蛋白表达;RT-PCR法分析ERK2mRNA表达。结果:与对照组比较,运动组胰岛素浓度降低;各运动组p-ERK1/2升高;1.5h/d-24h和-48h组t-ERK1/2增高;1h/d-24h组与1.5h/d-24h和-48hERK2mRNA表达增高。结论:耐力运动可能通过增加ERK1/2活性,提高大鼠骨骼肌对胰岛素的敏感性。  相似文献   

7.
Objectives:evaluate the effects that whole-body vibration (WBV) causes on the neuromuscular junctions and oxidative stress of the soleus muscle of obese Wistar rats.Methods:32 male Wistar rats were used, 16 of which were obesity induced by monosodium glutamate, randomized into four groups: control (GC), control with WBV (GCP), obese (GO) and obese with WBV (GOP). At the 70 days old, the training on WBV was started, performed 3 times a week, during 8 consecutive weeks. At the 130 days old, the animals were euthanized and the soleus muscles were collected.Results:Regarding the analysis of the neuromuscular junctions, the obese groups had lower mean size when compared to the control groups. On the other hand, the WBV presented higher averages when compared to the groups that did not perform the training. Regarding the oxidative stress, for the lipid peroxidation there was a significant difference between obese and non-obese animals, however, there was no difference between the animals WBV and those who did not.Conclusion:WBV promotes beneficial changes such as increased measurements of the structures of the neuromuscular junctions, but is not able to promote changes in the concentration of the cholinesterase enzyme in the synaptic cleft.  相似文献   

8.
骨骼肌线粒体解耦联蛋白3(uncoupling protein3,UCP3)在低氧时的生理作用尚不清楚。本研究观察了大鼠在耐力训练前后,模拟急性高原低氧各时间点的骨骼肌线粒体UCP3 mRNA和蛋白表达、线粒体呼吸功能、活性氧(reactive oxygen species,ROS)产生速率以及锰超氧化物歧化酶(manganese superoxide dismutase,MnSOD)表达和活性的变化。急性低氧导致线粒体一系列生物能学功能障碍。未训练大鼠UCP3蛋白在4h时比静息时升高了60%,而MnSOD蛋白含量及活性在低氧暴露过程中无显著变化;UCP3蛋白上调通过降低电子传递链耦联程度抑制O2-产生,但同时降低了ATP合成效率。耐力训练显著抑制急性低氧诱导的骨骼肌UCP3蛋白上调(67%;S42%)。训练组大鼠的ROS产生速率在低氧2h、4h和6h时显著低于未训练组;MnSOD蛋白含量及活性分别较术训练组提高了50%和34%。训练组人鼠MnSOD上调可增加线粒体对ROS的耐受力,进而抑制UCP3蛋白表达,从而提高氧化磷酸化效率。急性低氧中,未训练组大鼠呼吸控制比(respiratory control ratio,RCR)和磷氧比(ADP to oxygen consumption ratio,P/O)显著降低,而训练组RCR和P/O保持相对稳定。以上结果提示:(1)模拟急性高原低氧可诱导UCP3 mRNA及蛋白表达升高,从而降低升高了的线粒体膜电位(△ψ),使ROS的产生减少;(2)耐力训练可抑制低氧诱导的UCP3表达上调,提高ROS酶学清除能力,从而提高线粒体氧化磷酸化效率。  相似文献   

9.
We studied the effect of deuterium oxide (D2O) on contraction characteristics and ATPase activity of single glycerinated muscle fibers of rabbit psoas. D2O increased the maximum isometric force P0 by about 20%, while the force versus stiffness relation did not change appreciably. The maximum shortening velocity under zero load Vmax did not change appreciably in D2O, so that the force-velocity (P-V) curve was scaled depending on the value of P0. The Mg-ATPase activity of the fibers during generation of steady isometric force P0 was reduced by about 50% in D2O. Based on the Huxley contraction model, these results can be accounted for in terms of D2O-induced changes in the rate constants f1 and g1 for making and breaking actin-myosin linkages in the isometric condition, in such a way that f1/(f1+g1) increases by about 20%, while (f1+g1) remains unchanged. The D2O effect at the molecular level is discussed in connection with biochemical studies on actomyosin ATPase.  相似文献   

10.
We modified the isolation procedure of muscle and heart mitochondria. In human muscle, this resulted in a 3.4 fold higher yield of better coupled mitochondria in half the isolation time. In a preparation from rat muscle we studied factors that affected the stability of oxidative phosphorylation (oxphos) and found that it decreased by shaking the preparation on a Vortex machine, by exposure to light and by an increase in storage temperature. The decay was found to be different for each substrate tested. The oxidation of ascorbate was most stable and less sensitive to the treatments.When mitochondria were stored in the dark and the cold, the decrease in oxidative phosphorylation followed first order kinetics. In individual preparations of muscle and heart mitochondria, protection of oxidative phosphorylation was found by adding candidate stabilizers, such as desferrioxamine, lazaroids, taurine, carnitine, phosphocreatine, N-acetylcysteine, Trolox-C and ruthenium red, implying a role for reactive oxygen species and calcium-ions in the in vitro damage at low temperature to oxidative phosphorylation.In heart mitochondria oxphos with pyruvate and palmitoylcarnitine was most labile followed by glutamate, succinate and ascorbate.We studied the effect of taurine, hypotaurine, carnitine, and desferrioxamine on the decay of oxphos with these substrates. 1 mM taurine (n = 6) caused a significant protection of oxphos with pyruvate, glutamate and palmitoylcarnitine, but not with the other substrates. 5 mM L-carnitine (n = 6), 1 mM hypotaurine (n = 3) and 0.1 mM desferrioxamine (n = 3) did not protect oxphos with any of the substrates at a significant level.These experiments were undertaken in the hope that the in vitro stabilizers can be used in future treatment of patients with defects in oxidative phosphorylation. (Mol Cell Biochem 174: 61–66, 1997)  相似文献   

11.
Summary Intramuscular collagen in a slow (m. soleus) and a fast (m. rectus femoris) skeletal muscle was studied by biochemical, morphometric, and immunohistochemical methods. Wistar white rats of 1, 4, 10, and 24 months were used as experimental animals. Our aim was to evaluate the effects of life-long physical training (treadmill running, 5 days a week for 1, 3, 9, and 23 months depending on the age attained). The biochemical concentration of collagen was higher in m. soleus than in m. rectus femoris and it increased in youth and in old age in m. soleus. The trained rats had higher concentrations of collagen than the untrained rats at 10 and 24 months. The morphometrically measured area-fractions of both the endomysium and perimysium were higher in m. soleus than in m. rectus femoris. The age-related increase in intramuscular connective tissue was of endomysial origin. The immunohistochemical staining of type-I, -III, and -IV collagens indicated the more collagenous nature of m. soleus as compared with m. rectus femoris for all major collagen types; this was most marked for type-IV collagen of basement membrane. The results indicate that both age and endurance-type physical training further distinguish the slow and fast muscles with respect to their connective tissue.  相似文献   

12.
Summary Adult male Branta canadensis maxima were collected from a nonmigratory feral population during their premolt, molt and postmolt phases. Lean dry weight of the pectoralis muscle decreased significantly (p0.0001) during molt, as a result of disuse atrophy. Histochemical analysis revealed that the region of the pectoralis muscle sampled consisted of Red (fast-twitch oxidative-glycolytic) and White (fast-twitch glycolytic) muscle fiber types, in an approximate ratio of 9 to 1. There was no significant (p= 0.1238) difference in the relative percentages of the two fiber types during the three periods of study. There was, however, a significant decrease in mean cross-sectional area of both Red (p0.0194) and White (p0.0001) fibers during molt. Red and White fiber areas were strongly correlated with each other during molt (r 2=0.76, p=0.0010) and postmolt (r 2=0.70, p=0.0052), but not during premolt (r 2=0.02, p=0.7626). The latter finding may be related to fiber-type specific hypertrophy in premolt breeding males. Analysis of ultrastructure revealed that there was a significant (p=0.0003) decrease in the mean myofibrillar crosssectional area, and a significant increase in both the density (p=0.0227) and total number (p=0.0058) of myofibrils within the muscle fibers of the molting birds. These results indicate that the myofibrils split longitudinally during moltassociated disuse atrophy. A significant (p=0.0375) reduction in the amount of non-myofibrillar material (mitochondria) was also observed in the periphery of the muscle fibers of the molting birds. The changes observed during disuse atrophy are neither as pathological nor as extreme as those induced by experimental models of avian muscle atrophy.  相似文献   

13.
One of many problems to be faced when assessing in vivo human muscle mitochondria respiration by phosphorus magnetic resonance spectroscopy (31P-MRS) is the definition of the correct reference population and the values of reference range. To take into account most factors that influence muscle activity as age, sex, physical activity; nutritional state etc., an exceedingly high number of different reference groups are needed. To overcome this problem we developed specific tests to assess separately in vivo the activity and the functionality of muscle mitochondria by 31P-MRS in clinical settings. By activity we refer to muscle whole metabolic activity, i.e. the total oxidative capacity of muscle mitochondria which is influenced by many factors (age, sex, physical activity, nutritional state etc.). By functionality we refer to the qualitative aspects of mitochondrial respiration which depends on the integrity of mitochondrial multienzyme systems and on substrate availability. Our tests ha ve been experienced on some 1200 patients and are currently used to detect deficits of mitochondrial respiration and ion transport in patients with suspected primary or secondary muscle mitochondrial malfunctioning. (Mol Cell Biochem 174: 11–15, 1997)  相似文献   

14.
The effects of two types of acute exercise (1 h treadmill running at 20 m.min-1, or 6 x 10-s periods at 43 m.min-1, 0 degree inclination), as well as two training regimes (endurance and sprint) on the sensitivity of epitrochlearis muscle [fast twitch (FT) fibres] to insulin were measured in vitro in rats. The hormone concentration in the incubation medium producing the half maximal stimulation of lactate (la) production and glycogen synthesis was determined and used as an index of the muscle insulin sensitivity. A single period of moderate endurance as well as the sprint-type exercise increased the sensitivity of la production to insulin although the rate of la production enhanced markedly only after sprint exercise at 10 and 100 microU.ml-1 of insulin. These effects persisted for up to 2 h after the termination of exercise. Both types of exercise significantly decreased the muscle glycogen content, causing a moderate enhancement in the insulin-stimulated rates of glycogen synthesis in vitro for up to 2 h after exercise. However, a significant increase in the sensitivity of this process to insulin was found only in the muscle removed 0.25 h after the sprint effort. Training of the sprint and endurance types increased insulin-stimulated rates of glycolysis 24 h after the last period of exercise. The sensitivity of this process to insulin was also increased at this instant. Both types of training increased the basal and maximal rates of glycogen synthesis, as well as the sensitivity of this process to insulin at the 24th h following the last training session.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of three different training programmes on the maximal speed of an unloaded movement (a karate punch) was studied. Three movement variables were selected: maximal speed of the hand (Vh,max), maximal speed of the shoulder (Vs,max) and elbow extension speed (theta E) simultaneous with Vh.max. The programmes were: training group 1 (TG 1, n = 8) - karate students, dynamic heavy progressive resistance exercise (incline situp and incline bench press) + punch bag exercise; training group 2 (TG 2, n = 8)-karate students, punch bag training; training group 3 (TG 3, n = 5)-no karate experience, dynamic heavy progressive resistance exercise (as in TG 1). The movement variables were calculated from chrono-cyclo photographic recordings of the punches (100 Hz). The level of significance was set at 5%. Sixteen weeks of training gave the following results: significant increases in dynamic strength in all the training groups (14%-53%). In TG 1 the Vh.max increased significantly from 8.49 m.s-1, SD 1.19 to 9.35 m.s-1, SD 1.29 (10%); Vs.max increased significantly in TG 1 by 32% (2.18 m.s-1, SD 0.56 to 2.87 m.s-1, SD 0.98) and in TG 2 by 14% (2.40 m.s-1, SD 0.61 to 2.74 m.s-1, SD 0.52), and in TG 3 theta E at Vh,max increased significantly from 28.6 rad.s-1, SD 4.3 to 32.2 rad.s-1, SD 4.5 (13%). No significant relationships between the changes in maximal muscle strength and the changes in movement speed were found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The resting membrane potential and electrogenic contribution of α1- and α2-isoforms of Na+/K+-ATPase in the rat soleus muscle at early stages of gravity unloading were analyzed. The role of L-type calcium channels in accumulation of calcium ions in the myoplasm under these conditions was estimated. After 3-day antiorthostatic suspension, the resting membrane potential of the muscle fibers decreased from ?71.0 ± 0.5 to ?66.8 ± 0.7 mV, the muscle excitability reduced, and a trend of muscle fatigue acceleration appeared. The electrogenic contribution of ouabain-sensitive α2-isoform of Na+/K+-ATPase, determined as the depolarization caused by 1μM ouabain, decreased after suspension from 6.2 ± 0.6 to 0.5 ± 0.8 mV. The contribution of ouabain-resistant α1-isoform of Na+/K+-ATPase, determined as an additional depolarization after addition of 500 μM ouabain, decreased from 4.6 ± 0.6 to 2.6 ± 0.6 mV. The intensity of Fluo-4AM fluorescence in individual muscle fibers increased after suspension more than fourfold, which suggests an elevated calcium concentration in the myoplasm. A local delivery of nifedipine, a blocker of the L-type calcium channels, to the muscle removed this effect. The existence of a selective mechanism suppressing the electrogenic contribution of Na+/K+-ATPase α2-isoform, which is the main cause of the muscle fiber membrane depolarization after 3-day suspension, is postulated. The depolarization can activate part of potential-sensitive L-type Ca2+ channels, causing the accumulation of calcium ions in the muscle fiber myoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号