首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transferrin receptor 2 (TfR2) is a homologue of transferrin receptor 1 (TfR1), the protein that delivers iron to cells through receptor-mediated endocytosis of diferric transferrin (Fe(2)Tf). TfR2 also binds Fe(2)Tf, but it seems to function primarily in the regulation of systemic iron homeostasis. In contrast to TfR1, the trafficking of TfR2 within the cell has not been extensively characterized. Previously, we showed that Fe(2)Tf increases TfR2 stability, suggesting that trafficking of TfR2 may be regulated by interaction with its ligand. In the present study, therefore, we sought to identify the mode of TfR2 degradation, to characterize TfR2 trafficking, and to determine how Fe(2)Tf stabilizes TfR2. Stabilization of TfR2 by bafilomycin implies that TfR2 traffics to the lysosome for degradation. Confocal microscopy reveals that treatment of cells with Fe(2)Tf increases the fraction of TfR2 localizing to recycling endosomes and decreases the fraction of TfR2 localizing to late endosomes. Mutational analysis of TfR2 shows that the mutation G679A, which blocks TfR2 binding to Fe(2)Tf, increases the rate of receptor turnover and prevents stabilization by Fe(2)Tf, indicating a direct role of Fe(2)Tf in TfR2 stabilization. The mutation Y23A in the cytoplasmic domain of TfR2 inhibits its internalization and degradation, implicating YQRV as an endocytic motif.  相似文献   

2.
Morphological studies have indicated divergent pathways for the endocytosis of epidermal growth factor (EGF) and transferrin (Tf). In order to obtain biochemical evidence for the pathways associated with the endocytosis of EGF and Tf, a series of Percoll density gradients were employed to separate individual cellular components. Subcellular fractionation of murine fibroblasts exposed to a 2-min pulse of either 125I-Tf or 125I-EGF results in the detection of a total of six cellular compartments related to the internalization process of these ligands. The results of kinetic analysis of the entry of EGF into five membranous fractions is consistent with a model in which ligand is transferred sequentially from the plasma membrane through three distinct prelysosomal environments prior to reaching secondary lysosomes. Each prelysosomal compartment exhibits distinct density and temporal properties in a Percoll density gradient and may represent preexisting endocytic vesicles and/or specific domains of a continuous tubular structure, vesicularized during the process of cell disruption. In addition, the observed differential migration on Percoll density gradients of Tf and EGF containing compartments indicates that the majority of cell bound Tf segregates from EGF and enters a compartment lacking EGF within 5 min of internalization.  相似文献   

3.
Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'- diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR-labeled late endosomes, but nearly completely abrogated transport to cathepsin D- labeled lysosomes. From these results, we conclude that trafficking through early and late endosomes, but not to lysosomes, continued upon inactivation of the vacuolar proton pump.  相似文献   

4.
《The Journal of cell biology》1995,129(6):1509-1522
Cross-linking of surface receptors results in altered receptor trafficking in the endocytic system. To better understand the cellular and molecular mechanisms by which receptor cross-linking affects the intracellular trafficking of both ligand and receptor, we studied the intracellular trafficking of the transferrin receptor (TfR) bound to multivalent-transferrin (Tf10) which was prepared by chemical cross- linking of transferrin (Tf). Tf10 was internalized about two times slower than Tf and was retained four times longer than Tf, without being degraded in CHO cells. The intracellular localization of Tf10 was investigated using fluorescence and electron microscopy. Tf10 was not delivered to the lysosomal pathway followed by low density lipoprotein but remained accessible to Tf in the pericentriolar endocytic recycling compartment for at least 60 min. The retained Tf10 was TfR-associated as demonstrated by a reduction in surface TfR number when cells were incubated with Tf10. The presence of Tf10 within the recycling compartment did not affect trafficking of subsequently endocytosed Tf. Retention of Tf10 within the recycling compartment did not require the cytoplasmic domain of the TfR since Tf10 exited cells with the same rate when bound to the wild-type TfR or a mutated receptor with only four amino acids in the cytoplasmic tail. Thus, cross-linking of surface receptors by a multivalent ligand acts as a lumenal retention signal within the recycling compartment. The data presented here show that the recycling compartment labeled by Tf10 is a long-lived organelle along the early endosome recycling pathway that remains fusion accessible to subsequently endocytosed Tf.  相似文献   

5.
We have investigated receptor-mediated endocytosis of transferrin (Tf) in baby hamster kidney (BHK) cells, using fluorescence and electron microscopy, and by carrying out colocalization experiments with clathrin antibodies and a fluorescently tagged glycolipid. Early during internalization, Tf was found in small vesicles (100-150 nm in diameter) located at the cell periphery. The ligand remained associated with such vesicles when the latter concentrated towards the cell center, before ending up in the juxtanuclear area. Throughout this vesicular trafficking pathway, clathrin colocalized with Tf. We conclude that Tf is processed intracellularly via small coated endosomal vesicles (CEV) and is not delivered into large tubular endosomes (CURL; compartment for uncoupling receptors and ligands), typical for ligand trafficking to lysosomes. By determining the kinetics of Tf internalization and by comparing the flow of Tf to that of a fluorescent glycolipid, it can also be concluded that CEVs display sorting and recycling properties, implying that small vesicles can be shed from or fuse with CEVs. Acidic pH does not prevent the formation of CEVs, but their intracellular movement, towards the cell center, is impeded.  相似文献   

6.
This study was conducted to determine how extraordinarily high numbers of epidermal growth factor receptors (EGF-R) affected the binding and internalization of EGF in the transformed cell line A431. I found that at low EGF concentrations, the kinetics of binding behaved as a nonsaturable, first-order process showing no evidence of multiple-affinity classes of receptors. However, EGF dissociation rates were strongly dependent on the degree of receptor occupancy in both intact cells and isolated membranes. This occupancy-dependent dissociation appears to be due to diffusion-limited binding. EGF-induced receptor internalization was rapid and first order when the absolute number of occupied receptors was below 4 x 10(3) min-1. However, at higher occupancies the specific internalization rate progressively declined to a final limiting value of 20% normal. The saturation of EGF-R endocytosis was specific since internalization of transferrin receptors was not affected by high concentrations of either transferrin or EGF. Saturation of EGF-R endocytosis probably involves a specific component of the endocytic pathway since fluid phase endocytosis increased coordinately with EGF-R occupancy. I conclude that there are several aspects of EGF-R dynamics on A431 cells are neither similar to the behavior of EGF-R in other cell types nor similar to the reported behavior of other hormone receptors. Although A431 cells have an extraordinary number of EGF-R, they do not seem to have corresponding levels of at least two other crucial cell surface components: one that mediates EGF-induced rapid receptor internalization and one that attenuates EGF-induced membrane responses. These factors, in addition to the presence of diffusion-limited binding at low EGF concentrations, are probably responsible for the appearance of multiple-affinity classes of receptors in this cell type.  相似文献   

7.
Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2) at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.  相似文献   

8.
Previous studies have suggested a role for cytosolic Ca2+-independent phospholipase A2 (PLA2) activity in the formation of endosome membrane tubules that participate in the export of transferrin (Tf) and transferrin receptors (TfR) from sorting endosomes (SEs) and the endocytic recycling compartment (ERC). Here we show that the PLA2 requirement is a general feature of endocytic trafficking. The reversible cytoplasmic PLA2 antagonist ONO-RS-082 (ONO) produced a concentration-dependent, differential block in the endocytic recycling of both low-density lipoprotein receptor (LDLR) and TfRs, and in the degradative pathways of LDL and epidermal growth factor (EGF). These results are consistent with the model that a cytoplasmic PLA2 plays a general role in the export of cargo from multiple endocytic compartments by mediating the formation of membrane tubules.  相似文献   

9.
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.  相似文献   

10.
Several cellular signal transduction cascades are affected by oxidative stress. In this study, the effect of hydrogen peroxide (H2O2) on the endocytosis of the epidermal growth factor (EGF) receptor was investigated. Exposure of HER14 cells to H2O2 resulted in a concentration-dependent inhibition of EGF receptor internalization. Binding studies demonstrated that this H2O2-induced inhibition in internalization was not due to altered binding of EGF to its receptor. Addition of H2O2 at different time points during internalization showed that EGF receptor internalization was rapidly reduced, suggesting that one of the first steps in the internalization process is inhibited. In addition, H2O2 inhibited the internalization of a different receptor, the chicken hepatic lectin receptor, in a concentration-dependent manner as well. Treatment of cells with another inducer of oxidative stress, cumene hydroperoxide, also resulted in a decreased internalization. Finally, we showed that H2O2 inhibited EGF-induced mono-ubiquitination of the EGF receptor pathway substrate clone 15, a process that normally occurs during EGF receptor endocytosis. These results clearly show that oxidative stress interferes with EGF signaling.  相似文献   

11.
Endocytosis mediated by both LDL receptors (LDLRs) and transferrin receptors (TfRs) occurs in clathrin-coated pits and requires specific tyrosine-based internalization sequences located in the cytoplasmic domain of these receptors. Internalization of these receptors is mediated by endocytic proteins that interact with the internalization domains. We previously showed that macrophage colony-stimulating factor (M-CSF) rapidly increases LDLR-dependent uptake and metabolism of LDL. To study the mechanism by which M-CSF regulates LDL uptake, we compared the effect of M-CSF on the internalization of LDL and transferrin (Tf). Our results show that M-CSF substantially increased the rate of LDLR internalization without increasing LDLR localization on the cell surface. In contrast, M-CSF treatment of macrophages rapidly increased the localization of TfR to the cell surface but did not alter the relative rate of Tf internalization. Moreover, M-CSF regulated TfR and LDLR via the activation of distinct signaling pathways. Recruitment of TfR to the cell surface was attenuated by phosphatidylinositol 3-kinase inhibitors, whereas stimulated LDL uptake was inhibited by the serine/threonine phosphatase inhibitor okadaic acid. Taken together, our results indicate that M-CSF differentially regulates receptors that undergo endocytosis and that increased LDL uptake results from a selective increase in the rate of LDLR internalization.  相似文献   

12.
The posttranslational regulation of transferrin receptor (TfR1) is largely unknown. We investigated whether iron availability affects TfR1 endocytic cycle and protein stability in HepG2 hepatoma cells exposed to ferric ammonium citrate (FAC). NH4Cl and bafilomycin A1, but not the proteasomal inhibitor MG132, prevented the FAC-mediated decrease in TfR1 protein levels, thus indicating lysosomal involvement. Knockdown experiments showed that TfR1 lysosomal degradation is independent of 1) endocytosis mediated by the clathrin adaptor AP2; 2) Tf, which was suggested to facilitate TfR1 internalization; 3) H-ferritin; and 4) MARCH8, previously implicated in TfR1 degradation. Notably, FAC decreased the number of TfR1 molecules at the cell surface and increased the Tf endocytic rate. Colocalization experiments confirmed that, upon FAC treatment, TfR1 was endocytosed in an AP2- and Tf-independent pathway and trafficked to the lysosome for degradation. This unconventional endocytic regulatory mechanism aimed at reducing surface TfR1 may represent an additional posttranslational control to prevent iron overload. Our results show that iron is a key regulator of the trafficking of TfR1, which has been widely used to study endocytosis, often not considering its function in iron homeostasis.  相似文献   

13.
The rapid internalization of receptor tyrosine kinases after ligand binding has been assumed to be a negative modulation of signal transduction. However, accumulating data indicate that signal transduction from internalized cell surface receptors also occurs from endosomes. We show that a substantial fraction of tyrosine-phosphorylated epidermal growth factor receptor (EGFR) and Shc, Grb2 and Cbl after internalization relocates from early endosomes to compartments which are negative for the early endosomes, recycling vesicle markers EEA1 and transferrin in EGF-stimulated cells. These compartments contained the multivesicular body and late endosome marker CD63, and the late endosome and lysosome marker LAMP-1, and showed a multivesicular morphology. Subcellular fractionation revealed that activated EGFR, adaptor proteins and activated ERK 1 and 2 were located in EEA1-negative and LAMP-1-positive fractions. Co-immunoprecipitations showed EGFR in complex with both Shc, Grb2 and Cbl. Treatment with the weak base chloroquine or inhibitors of lysosomal enzymes after EGF stimulation induced an accumulation of tyrosine-phosphorylated EGFR and Shc in EEA1-negative and CD63-positive vesicles after a 120-min chase period. This was accompanied by a sustained activation of ERK 1 and 2. These results suggest that EGFR signaling is not spatially restricted to the plasma membrane, primary vesicles and early endosomes, but is continuing from late endocytic trafficking organelles maturing from early endosomes.  相似文献   

14.
We have previously shown that overexpression of LIM kinase1 (LIMK1) resulted in a marked retardation of the internalization of the receptor-mediated endocytic tracer, Texas red-labeled epidermal growth factor (EGF) in low-invasive human breast cancer cell MCF-7. We thereby postulate that LIMK1 signaling plays an important role in the regulation of ligand-induced endocytosis of EGF receptor (EGFR) in tumor cells by reorganizing and influencing actin-filament dynamics. In the present study, we further assessed the effect of wild-type LIMK1, a kinase-deficient dominant negative mutant of LIMK1 (DN-LIMK1) and an active, unphosphorylatable cofilin mutant (S3A cofilin) on internalization of EGF-EGFR in MDA-MB-231, a highly invasive human breast cancer cell line. We demonstrate here that a marked delay in the receptor-mediated internalization of Texas red-labeled EGF was observed in the wild-type LIMK1 transfectants, and that most of the internalized EGF staining were accumulated within transferrin receptor-positive early endosomes even after 30 min internalization. In contrast, the expression of dominant-negative LIMK1 mutant rescued the efficient endocytosis of Texas red-EGF, and large amounts of Texas red-EGF staining already reached LIMPII-positive late endosomes/lysosomal vacuoles after 15 min internalization. We further analyzed the effect of S3A cofilin mutant on EGFR trafficking, and found an efficient delivery of Texas red-EGF into late endosomes/lysosomes at 15–30 min after internalization. Taken together, our novel findings presented in this paper implicate that LIMK1 signaling indeed plays a pivotal role in the regulation of EGFR trafficking through the endocytic pathway in invasive tumor cells.  相似文献   

15.
A significant fraction of internalized transferrin (Tf) concentrates in the endocytic recycling compartment (ERC), which is near the microtubule-organizing center in many cell types. Tf then recycles back to the cell surface. The mechanisms controlling the localization, morphology, and function of the ERC are not fully understood. We examined the relationship of Tf trafficking with microtubules (MTs), specifically the subset of stable, detyrosinated Glu MTs. We found some correlation between the level of stable Glu MTs and the distribution of the ERC; in cells with low levels of Glu MTs concentrated near to the centriole, the ERC was often tightly clustered, whereas in cells with higher levels of Glu MTs throughout the cell, the ERC was more dispersed. The clustered ERC in Chinese hamster ovary cells became dispersed when the level of Glu MTs was increased with taxol treatment. Furthermore, in a temperature-sensitive Chinese hamster ovary cell line (B104-5), the cells had more Glu MTs when the ERC became dispersed at elevated temperature. Microinjecting purified anti-Glu tubulin antibody into B104-5 cells at elevated temperature induced the redistribution of the ERC to a tight cluster. Microinjection of anti-Glu tubulin antibody slowed recycling of Tf to the cell surface without affecting Tf internalization or delivery to the ERC. Similar inhibition of Tf recycling was caused by microinjecting anti-kinesin antibody. These results suggest that stable Glu MTs and kinesin play a role in the organization of the ERC and in facilitating movement of vesicles from the ERC to the cell surface.  相似文献   

16.
Oxidative stress can have a myriad of effects on many different cell types. The mechanisms by which these effects occur are not completely known. Chimeric proteins of the GAL4 DNA binding domain and Cdk4, or the GAL4 activation domain with p16, were expressed in the yeast two-hybrid system. Cells expressing these chimeric proteins were cultured with hydrogen peroxide and decreases in beta-galactosidase activity were observed when compared to cells incubated without hydrogen peroxide. When cells, which expressed the intact GAL4 binding protein, were cultured in the presence of hydrogen peroxide the opposite was observed. Incubation of cells with buthionine sulfoximine augmented these responses to hydrogen peroxide. These data suggest that one of the mechanisms by which oxidative stress acts is via the modulation of protein-protein interactions and demonstrate that the yeast two-hybrid system may be a model by which to study protein interactions due to oxidative stress.  相似文献   

17.
J B Fishman  R E Fine 《Cell》1987,48(1):157-164
We used a cholinesterase-mediated density shift protocol to investigate the movement of internalized transferrin (Tf) through endo- and exocytic coated vesicles (CVs) in the perfused rat liver. Upon internalization, exogenous 125I-Tf was found in endocytic CVs but not in cholinesterase-containing (i.e., exocytic) CVs (0-40 min). Between 1 and 2 hr, 125I-Tf began to appear in exocytic CVs. The origin of the exocytic CV was further investigated. After perfusion of the liver with asialotransferrin, the exocytic CVs were shown to contain resialylated Tf, indicating that the trans Golgi was the origin of this class of CVs. The resialylated Tf accumulated in the extracellular medium with kinetics very similar to the time course for appearance of Tf in cholinesterase-containing, exocytic CVs, suggesting that these CVs are directly involved in the transfer of material from the trans Golgi to the cell surface.  相似文献   

18.
Receptor internalization by endocytosis regulates diverse cellular processes, from the rate of nutrient uptake to the timescale of essential signaling events. The established view is that internalization is tightly controlled by specific protein-binding interactions. However, recent work suggests that physical aspects of receptors influence the process in ways that cannot be explained by biochemistry alone. Specifically, work from several groups suggests that increasing the steric bulk of receptors may inhibit their uptake by multiple types of trafficking vesicles. How do biochemical and biophysical factors work together to control internalization? Here, we show that receptor uptake is well described by a thermodynamic trade-off between receptor-vesicle binding energy and the entropic cost of confining receptors within endocytic vesicles. Specifically, using large ligands to acutely increase the size of engineered variants of the transferrin receptor, we demonstrate that an increase in the steric bulk of a receptor dramatically decreases its probability of uptake by clathrin-coated structures. Further, in agreement with a simple thermodynamic analysis, all data collapse onto a single trend relating fractional occupancy of the endocytic structure to fractional occupancy of the surrounding plasma membrane, independent of receptor size. This fundamental scaling law provides a simple tool for predicting the impact of receptor expression level, steric bulk, and the size of endocytic structures on receptor uptake. More broadly, this work suggests that bulky ligands could be used to drive the accumulation of specific receptors at the plasma membrane surface, providing a biophysical tool for targeted modulation of signaling and metabolism from outside the cell.  相似文献   

19.
The fungal metabolite brefeldin A (BFA) induces profound alterations in the morphology of intracellular organelles. Although BFA promotes the formation of extensive tubular endosomal domains, our understanding of the effects of the antibiotic on vesicle traffic events associated with endocytosis is limited. Thus, alterations in the transferrin (Tf) receptor's endocytic/recycling pathway upon treatment of human erythroleukemia K562 cells with BFA were studied as a pharmacological response. Treatment of K562 cells with BFA caused a down-regulation in the number of cell surface Tf receptors. This effect is highly reminiscent of the well-known action of phorbol 12-myristate 13-acetate (PMA) on Tf receptor traffic in K562 cells. However, our results demonstrate that these two agents down-regulate the Tf receptor via different mechanisms. The effects of BFA and PMA were additive when K562 cells were incubated with both together. Using the In/Sur method, the endocytic rate constant for Tf internalization was determined and PMA was found to greatly enhance ke, from 0.28 min–1 to 0.43 min–1, while BFA had little effect (Ke=0.20 min–1). In contrast, BFA-treatment alters the exocytic rate constant for return of internalized receptors to the cell surface, with the largest effect exerted on a slow-release, monensin-sensitive, compartment. The sum of the endocytic and exocytic kinetic data support a model in which BFA and PMA down-regulate the Tf receptor in K562 cells by mechanistically distinct actions, with BFA targeting exocytic monensin-sensitive intracellular compartments and PMA acting to exert a profound influence on elements of receptor internalization.Abbreviations BFA brefeldin A - ARF ADP-ribosylation factor - HRP horseradish peroxidase - Tf transferrin - PMA phorbol 12-myristate 13-acetate - DMSO dimethyl sulfoxide - PBS phosphate-buffered saline - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - BSA bovine serum albumin - FITC-Tf fluorescein isothiocyanate-labelled transferrin  相似文献   

20.
Transferrin internalization via clathrin-mediated endocytosis and subsequent recycling after iron delivery has been extensively studied. Here we demonstrate a previously unrecognized parameter regulating this recycling, the binding of galectin-3 to particular glycoforms of transferrin. Two fractions of transferrin, separated by affinity chromatography based on their binding or not to galectin-3, are targeted to kinetically different endocytic pathways in HFL-1 cells expressing galectin-3 but not in SKBR3 cells lacking galectin-3; the SKBR3 cells, however, can acquire the ability to target these transferrin glycoforms differently after preloading with exogenously added galectin-3. In all, this study provides the first evidence of a functional role for transferrin glycans, in intracellular trafficking after uptake. Moreover, the galectin-3-bound glycoform increased in cancer, suggesting a pathophysiological regulation. These are novel aspects of transferrin cell biology, which has previously considered only a degree of iron loading, but not other forms of heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号