共查询到20条相似文献,搜索用时 0 毫秒
1.
John M. Burke Shanna E. Carney Michael L. Arnold 《Evolution; international journal of organic evolution》1998,52(1):37-43
The assumption of hybrid inferiority is central to the two models most widely applied to the prediction of hybrid zone evolution. Both the tension zone and mosaic models assume that natural selection acts against hybrids regardless of the environment in which they occur. To test this assumption, we investigated components of fitness in Iris fulva, I. hexagona and their reciprocal F1 hybrids under greenhouse conditions. The four cross types were compared on the basis of seed germination, vegetative and clonal growth, and sexual reproduction. In all cases, the hybrids performed as well as, or significantly better than, both of their parents. These results suggest that F1 hybrids between I. fulva and I. hexagona are at least as fit as their parents. The results of this study are therefore inconsistent with the assumptions of both the tension zone and mosaic models of hybrid zone evolution. 相似文献
2.
John M. Burke Tiffany J. Voss Michael L. Arnold 《Evolution; international journal of organic evolution》1998,52(5):1304-1310
Hybridization between divergent lineages has long been assumed to give rise to unfavorable interactions between the parental genomes. These deleterious genetic interactions are further assumed to result in the production of hybrid offspring with decreased levels of viability and/or fertility. To test this assumption, we investigated the role of both nuclear and cytonuclear epistatic interactions in determining the frequencies of F2 genotypes produced in crosses between two species of Louisiana iris, Iris fulva and I. brevicaulis. Overall, these crosses revealed a significant deficit of intermediate hybrid genotypes accompanied by an excess of parental-like genotypes, suggesting that genetic interactions may promote postmating reproductive isolation between these species. However, analyses of single and multilocus segregation patterns revealed a variety of negative and positive interactions between the genomes of the parental taxa at the nuclear and cytonuclear levels. Taken together, these results indicate that the traditional view that interactions between divergent genomes are always deleterious is an oversimplification. Rather, it seems likely that crosses between divergent lineages can lead to the production of both fit and unfit hybrid genotypes. 相似文献
3.
4.
Cynthia L. Hunter 《Evolution; international journal of organic evolution》1993,47(4):1213-1228
Genotypic diversity in six populations of the endemic Hawaiian reef coral, Porites compressa, was directly related to habitat-disturbance history. The highest diversity (lowest amount of clonal proliferation) was found in populations that had been intensely or recently disturbed. In these populations, space was not limited and mean colony size was small (< 500 cm2), suggesting early stages of recolonization. In an undisturbed, protected habitat, lower genotypic diversity was a result of a significant degree of clonal replication of established genotypes. Unoccupied substratum was rare in this habitat, and average colony size was large (> 2500 cm2). Populations in intermediately disturbed habitats showed intermediate levels of diversity and clonal structure as a result of the combined contributions of sexual and asexual reproduction. Individual clones were distributed over small areas (< 4 m2) or distances (< 1 m) in young populations, and more broadly (> 256 m2) and over longer distances (> 90 m) in the older, undisturbed population. Interpretations of life-history parameters and estimates of total genetic variability in species that have the potential to reproduce asexually are dependent upon an assessment of the overall clonal structure of populations. The power of genotypic assays to reliably detect clonal versus unique colonies, as well as the spatial scales over which clonal populations are sampled, are critical to such assessments. 相似文献
5.
6.
Pollinator preference may influence the origin and dynamics of plant hybrid zones. Natural hybrid populations between the red‐flowered Iris fulva and the blue‐flowered Iris brevicaulis are found in southern Louisiana. The genetic structure of these populations reflects a lack of intermediate genotypes. We observed pollinator behaviour in an experimental array with five plants each of I. fulva, I. brevicaulis, their F1, and the first backcross generation in each direction, to obtain data on flower type preferences and transitions between flower types. The most abundant visitors were Ruby‐throated Hummingbirds (Archilochus colubris) and workers of the bumblebee Bombus pennsylvanicus. Hummingbirds visited I. fulva twice as often as I. brevicaulis and visited hybrids at intermediate frequencies. Bumblebee workers preferred the purple‐flowered F1s and visited plants of I. fulva and the backcross to I. fulva more often than I. brevicaulis and its backcross. Overall, F1 flowers were visited most frequently. Both hummingbirds and bumblebees visited nearest neighbours in almost 80% of the interplant movements. This meant that a majority of movements were between different flower types, rather than between plants of the same type. Findings from the present study suggest that pollinator preference is not a major causal factor for the lack of intermediate genotypes in natural iris hybrid populations. Instead, pollinator behaviour in our array promoted mixed mating between flower types belonging to different pollination syndromes. However, owing to predominant nearest‐neighbour visitation, the spatial distribution of parental and hybrid genotypes (in concert with pollinator behaviour) will have a strong influence on mating patterns and thus the genotypic structure and evolution of Louisiana iris hybrid zones. 相似文献
7.
论克隆植物的遗传多样性 总被引:22,自引:0,他引:22
概述了克隆植物的类型与特点 ,对克隆植物的遗传多样性及其遗传结构的一些特点进行了综述 ,并讨论了克隆植物遗传变异的来源。总体而言 ,克隆植物拥有比早期推测大得多的遗传变异 ,虽然克隆种与其近缘有性繁殖种相比 ,遗传多样性较低 ,但广泛的遗传单态性却很罕见。克隆植物种群的遗传结构有所改变 ,广布基因型很少 ,大多数基因型仅分布于某一种群之内 ,种群间基因型多态性存在广泛的变异。不同克隆植物之间遗传多样性相差很大 ,遗传结构也有巨大差异。说明除生殖模式外 ,其他的一些因素 ,如地理分布范围、生境特点 ,散布方式和种群历史等都对克隆植物遗传多样性有重要影响。 相似文献
8.
Caroline E. Dubé Emilie Boissin Jeffrey A. Maynard Serge Planes 《Molecular ecology》2017,26(15):3860-3869
Clonal populations are often characterized by reduced levels of genotypic diversity, which can translate into lower numbers of functional phenotypes, both of which impede adaptation. Study of partially clonal animals enables examination of the environmental settings under which clonal reproduction is favoured. Here, we gathered genotypic and phenotypic information from 3,651 georeferenced colonies of the fire coral Millepora platyphylla in five habitats with different hydrodynamic regimes in Moorea, French Polynesia. In the upper slope where waves break, most colonies grew as vertical sheets (“sheet tree”) making them more vulnerable to fragmentation. Nearly all fire corals in the other habitats are encrusting or massive. The M. platyphylla population is highly clonal (80% of the colonies are clones), while characterized by the highest genotype diversity ever documented for terrestrial or marine populations (1,064 genotypes). The proportion of clones varies greatly among habitats (≥58%–97%) and clones (328 clonal lineages) are distributed perpendicularly from the reef crest, perfectly aligned with wave energy. There are six clonal lineages with clones dispersed in at least two adjacent habitats that strongly demonstrate phenotypic plasticity. Eighty per cent of the colonies in these lineages are “sheet tree” on the upper slope, while 80%–100% are encrusting or massive on the mid slope and back reef. This is a unique example of phenotypic plasticity among reef‐building coral clones as corals typically have wave‐tolerant growth forms in high‐energy reef areas. 相似文献
9.
Despite the advantage of avoiding the costs of sexual reproduction, asexual vertebrates are very rare and often considered evolutionarily disadvantaged when compared to sexual species. Asexual species, however, may have advantages when colonizing (new) habitats or competing with sexual counterparts. They are also evolutionary older than expected, leaving the question whether asexual vertebrates are not only rare because of their 'inferior' mode of reproduction but also because of other reasons. A paradigmatic model system is the unisexual Amazon molly, Poecilia formosa, that arose by hybridization of the Atlantic molly, Poecilia mexicana, as the maternal ancestor, and the sailfin molly, Poecilia latipinna, as the paternal ancestor. Our extensive crossing experiments failed to resynthesize asexually reproducing (gynogenetic) hybrids confirming results of previous studies. However, by producing diploid eggs, female F(1) -hybrids showed apparent preadaptation to gynogenesis. In a range-wide analysis of mitochondrial sequences, we examined the origin of P. formosa. Our analyses point to very few or even a single origin(s) of its lineage, which is estimated to be approximately 120,000 years old. A monophyletic origin was supported from nuclear microsatellite data. Furthermore, a considerable degree of genetic variation, apparent by high levels of clonal microsatellite diversity, was found. Our molecular phylogenetic evidence and the failure to resynthesize the gynogenetic P. formosa together with the old age of the species indicate that some unisexual vertebrates might be rare not because they suffer the long-term consequences of clonal reproduction but because they are only very rarely formed as a result of complex genetic preconditions necessary to produce viable and fertile clonal genomes and phenotypes ('rare formation hypothesis'). 相似文献
10.
Vertebrates usually reproduce sexually in which males and females contribute their offspring genome and produce genetically diverse offspring. However, some of them are asexual without genetic contribution from males. The nocturnal gecko, Lepidodactylus lugubris, is all females and reproduces parthenogenetically. This gecko is known to consist of diploid and triploid clones in the tropical and subtropical regions, which can be identified by their dorsal marking patterns, ploidy, and protein polymorphism. This gecko is also distributed in the southern parts of Japan, and several clones have been reported. In this study, we investigated the origins and genetic diversity of Japanese L. lugubris by clonal discrimination using microsatellite and mitochondrial DNA analyses. A total of 748 individuals were collected from 21 islands of five island groups (Ogasawara, Okinawa, Miyako, Yaeyama and Daito Islands) and 17 clones were distinguished genetically. Mitochondrial cyt b sequences of these clones suggested that they were all closely related and differentiated recently. Clonal diversity was much higher (14 clones) in the Daito Islands than in the other island groups in which only one or two clones coexisted. Judging from the dorsal marking patterns and ploidy known so far, six clones were cosmopolitan and may be colonized from the outside of Japan. However, other 11 clones were endemic to the Daito Islands and explained by possible hybridization between the one female diploid clone and one male diploid clone because other 9 clones were triploid and all had the combinations of polymorphic microsatellite alleles of these female and male diploid clones. Although the males have never been recorded in the Daito Islands, males might appear in the past. These findings contribute to understanding of clonal diversity and dynamics of asexually reproducing animals. If diploid parthenogenetic geckos can produce triploid clones by mating with the diploid males, clonal diversity would increase rapidly in a small island, and such newly produced triploid clones would expand widely. 相似文献
11.
ALEXANDRA SÁ‐PINTO STUART J. E. BAIRD CATARINA PINHO PAULO ALEXANDRINO MADALENA BRANCO 《Biological journal of the Linnean Society. Linnean Society of London》2010,100(1):154-169
Previous studies have reported the occurrence of three differentiated mtDNA lineages within Patella rustica in the Mediterranean Sea. Two hypotheses have been proposed to explain these observations: (1) the maintenance of ancestral polymorphism within a single species; (2) the occurrence of cryptic species not identified previously. To distinguish between these hypotheses, we screened the genetic variability at nine allozyme loci, an intron from the α‐amylase gene and a mitochondrial gene for 187 individuals of P. rustica sampled from seven Mediterranean localities. Eight additional localities were screened for the last two markers to place the differentiated lineages in a clear geographic context. Our results demonstrate that the three mtDNA lineages correspond to three distinct nuclear genotype clusters and provide further details on their distribution: the cluster corresponding to the mtDNA lineage from the Atlantic and western Mediterranean extends as far as the south coast of Italy, whereas the remaining two clusters occur in sympatry in the eastern Mediterranean. One of the eastern Mediterranean clusters is highly differentiated and seems to be reproductively isolated from the codistributed form; we therefore suggest that it corresponds to a new species. The remaining two clusters are less differentiated and form a contact zone across south Italian shores. This three‐way contact zone constitutes an interesting model for the study of speciation in the marine realm. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 154–169. 相似文献
12.
• Background and Aims The free-floating aquatic bladderwort Utricularia australis f. australis is a sterile F1 hybrid of U. australis f. tenuicaulis and U. macrorhiza. However, co-existence of the hybrids and parental species has not been observed. In the present study, the following questions are addressed. (a) Does the capacity of the two parental species to reproduce sexually contribute to higher genotypic diversity than that of sterile F1 hybrid? (b) Are there any populations where two parental species and their hybrid co-exist? (c) If not, where and how do hybrids originate?• Methods The presence and absence of Utricularia was thoroughly investigated in two regions in Japan. An amplified fragment length polymorphism (AFLP) analysis was conducted for 397 individuals collected from all populations (33 in total) where Utricularia was observed.• Key Results The mean number of genotypes per population (G) and genotypic diversity (D) were extremely low irrespective of the capacity to reproduce sexually: G was 1·1–1·2 and D was 0·02–0·04. The hybrid rarely co-existed with either parental species, and the co-existence of two parental species was not observed. Several AFLP bands observed in the hybrid are absent in both parental genotypes, and parent and hybrid genotypes in the same region do not show greater genetic similarity than those in distant regions.• Conclusions The capacity to reproduce sexually in parental species plays no role in increasing genotypic diversity within populations. The observed genotypes of the hybrid could not have originated from hybridization between the extant parental genotypes within the study regions. Considering the distribution ranges of three investigated taxa, it is clear that the hybrid originated in the past, and hybrid populations have been maintained exclusively by clonal propagation, which may be ensured by both hybrid vigor and long-distance dispersal of clonal offspring. 相似文献
13.
Catherine S. McFadden 《Evolution; international journal of organic evolution》1997,51(1):112-126
Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (Go) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective population sizes should promote inbreeding in clonal species, inbreeding does not appear to contribute significantly to the population structure of A. rudyi. Genet genotype frequencies conformed to Hardy-Weinberg expectations in all populations, and inbreeding coefficients (f) were close to zero. In general, the population structure of A. rudyi did not differ significantly from that observed among outcrossing sexual species with philopatric larval dispersal. Age estimates suggest, however, that genets of A. rudyi live for many decades. Genet longevity may promote high genotypic diversity within A. rudyi populations and may be the most important evolutionary consequence of clonal reproduction in this species and the many others that share its dispersal characteristics. 相似文献
14.
We performed transplant experiments with Louisiana irises to test the assumptions of three models of hybrid zone structure: the bounded hybrid superiority model, the mosaic model, and the tension zone model. Rhizomes of Iris fulva, I. hexagona, and F1 and F2 hybrids were planted at four sites in southeastern Louisiana in 1994. Wild irises grew at all four sites, but differed in genotypic composition among sites. The sites were characterized by (1) pure I. fulva plants; (2) I. fulva-like hybrids; (3) I. hexagona-like hybrids; and (4) pure I. hexagona plants. The sites differed significantly in light availability, soil moisture and chemical composition, and vegetation. Survival of transplants was high in all sites and did not differ significantly among plant classes. Iris hexagona produced significantly more leaf material than I. fulva at the I. hexagona and I. hexagona hybrid sites. The two species did not differ in leaf production at the I. fulva and I. fulva hybrid sites. Leaf production by both classes of hybrid was as great as, or significantly greater than, both parental classes in all sites. Iris hexagona rhizomes gained mass in the I. hexagona and I. hexagona hybrid sites, but lost mass in the I. fulva and I. fulva hybrid sites. Iris fulva rhizomes lost mass in all sites. There were no significant differences in rhizome growth among classes at the I. fulva site. At all other sites, F1 rhizomes grew significantly more than all other classes except for I. hexagona at the I. hexagona hybrid site. There were no significant differences among classes in the production of new ramets. Overall blooming frequencies were 30% for I. fulva, 10% for F1s, 3% for F2s, and 0.7% for I. hexagona. Blooming frequency did not differ among sites for I. fulva, but significantly more F1s bloomed at the I. hexagona site than at the I. fulva site. These results are inconsistent with all three models of hybrid zone structure. They suggest that once rhizomes become established, hybrids can reproduce by clonal growth as successfully as parents in all habitats, and can outperform them in some habitats. Clonal reproduction may ensure the long-term survival of early generation hybrids and allow the establishment of introgressed populations, despite the fact that F1 hybrids are rarely produced in nature. 相似文献
15.
16.
毛乌素沙地根茎灌木羊柴的遗传多样性和克隆结构 总被引:17,自引:0,他引:17
采用淀粉凝胶电泳技术对毛乌素沙地根茎灌木羊柴(HedysarumlaeveMaxim.)8个群体的遗传多样性和克隆结构进行了初步研究。利用10个酶系统15个等位酶位点的检测表明,羊柴群体具有较高的遗传变异水平,多态位点百分率P=37.0,等位基因平均数A=1.48,平均期望杂合度He=0.101;但8个群体间的分化很小(Fst=0.067);固定沙丘群体和半固定沙丘群体在等位酶水平上的变异性无显著差异。通过7个多态位点的研究表明,羊柴群体中的克隆多样性很高(D=0.9156),但不同克隆在规模上相差很大。同时,群体间的克隆分化较大,广布基因型仅占3.2%。克隆空间结构的分析表明,羊柴的基株分布为游击型构型,克隆之间的镶嵌明显。 相似文献
17.
The loss of sex in clonal plants 总被引:6,自引:0,他引:6
Christopher G. Eckert 《Evolutionary ecology》2001,15(4-6):501-520
Most plants combine sexual and clonal reproduction, and the balance between the two may vary widely between and within species. There are many anecdotal reports of plants that appear to have abandoned sex for clonal reproduction, yet few studies have quantified the degree of sexual variation in clonal plants and fewer still have determined the underlying ecological and/or genetic factors. Recent empirical work has shown that some clonal plants exhibit very wide variation in sexual reproduction that translates into striking variation in genotypic diversity and differentiation of natural populations. Reduced sexual reproduction may be particularly common at the geographical margins of species' ranges. Although seed production and sexual recruitment may often be limited by biotic and abiotic aspects of the environment in marginal populations, genetic factors, including changes in ploidy and sterility mutations, may also play a significant role in causing reduced sexual fertility. Moreover, environmental suppression of sexual recruitment may facilitate the evolution of genetic sterility because natural selection no longer strongly maintains the many traits involved in sex. In addition to the accumulation of neutral sterility mutations in highly clonal populations, the evolution of genetic infertility may be facilitated if sterility is associated with enhanced vegetative growth, clonal propagation or survival through either resource reallocation or pleiotropy. However, there are almost no experimental data with which to distinguish among these possibilities. Ultimately, wide variation in genotypic diversity and gene flow associated with the loss of sex may constrain local adaptation and the evolution of the geographical range limit in clonal plants. 相似文献
18.
Mary Alice Coffroth Howard R. Lasker 《Evolution; international journal of organic evolution》1998,52(2):379-393
Clonality is a common feature of plants and benthic marine organisms. In some cases clonal propagation results in a modest increase in population density, while in other cases dense populations may be generated by the propagation of only a few clones. We analyzed the population structure of the clonal gorgonian Plexaura kuna across several reef habitats with a range of disturbance regimes in the San Blas Islands, Panama, and the Florida Keys, U.S.A. Using multilocus DNA fingerprinting to distinguish clones, we estimated that clones ranged in size from single individuals to 500 colonies. The number of genotypes identified on nine reefs ranged from three to 25. Population density and clonal structure varied markedly among reefs with GO:GE ranging from 0.03 to 1.00. On some reefs vegetative reproduction transformed P. kuna from a rare species to the numerically most abundant gorgonian. The effect of clonal propagation on P. kuna population structure was dependent on interactions between fragmentation and the reef environment (disturbance regime, substratum). We present a generalized model relating population structure of clonal species to disturbance and the mode of vegetative propagation. Disturbance promotes colony propagation and skews the size-frequency distribution of clones among P. kuna and many species that propagate via fragmentation. Propagation of these species is promoted by disturbance (disturbance sensitive), and they tend to have clones that are dispersed across local sites. Species that fragment and have dispersed clones, have high genotypic diversity in habitats with low levels of disturbance. Genotypic diversity then decreases at intermediate disturbance and increases again at the highest disturbance levels. Clonal species that do not rely on disturbance for vegetative propagation (disturbance insensitive) generally do not disperse and form aggregated clones. Among these taxa disturbance has a greater affect on individual survival than on propagation. Genotypic diversity is directly related to the level of disturbance until very high levels of disturbance, at which time genotypic diversity declines. 相似文献
19.
Mitchell B. Cruzan Michael L. Arnold 《Evolution; international journal of organic evolution》1994,48(6):1946-1958
The phenology of different genotypes and the distribution of genetic variation among flowering plants and their progeny were examined to assess the levels of assortative mating and selection in a hybrid population of Iris. This study and a previous survey of RAPD nuclear markers and chloroplast markers indicate that the population consists of parental genotypes and recombinant hybrid genotypes that are similar to the parental species (I. fulva and I. brevicaulis), although lacking intermediate genotypes. Early in the season only I. fulva genotypes produced flowers, but as flowering in these plants decreased, the hybrid genotypes and I. brevicaulis genotypes began flowering, resulting in a 24-d period of coincidental flowering. The genotypic distribution of seeds produced during the period of flowering overlap contained a high frequency of intermediate genotypes that were not present in the adult generation. The degree of effective assortative mating was examined by comparing the observed progeny genotypic distributions with expected distributions from a mixed-mating model. The model included selfing and random outcrossing to the nearest plants that had pollen-bearing flowers on the day the recipient flower was receptive. The observed genotypic distribution of progeny from plants with I. brevicaulis chloroplast DNA (cpDNA) was not significantly different from the expected distribution. For I. fulva genotypes, however, there were higher than expected frequencies in the extreme genotypic classes, although intermediate genotypes were absent, indicating that these plants were preferentially mating with similar genotypes. Compared with the extreme genotypes, a larger proportion of the intermediate seed progeny produced were aborted, indicating that intermediate genotypes have lower viability. On the basis of the observed progeny genotypes and genetic disequilibria estimates for the adults and the progeny, there appears to be a pattern of effective asymmetrical mating in this population. This asymmetry is most likely due to pollen-style interactions that reduce the fertilization ability of genetically dissimilar pollen, or preferential abortion of genetically intermediate zygotes by I. fulva-like genotypes. The lack of any apparent discrimination by I. brevicaulis-like genotypes creates a directional exchange of nuclear genetic elements that will have implications for introgression and the evolution of hybrid genotypes. 相似文献
20.
For a new diploid or homoploid hybrid species to become established, it must diverge ecologically from parental genotypes. Otherwise the hybrid neospecies will be overcome by gene flow or competition. We initiated a series of experiments designed to understand how the homoploid hybrid species, Helianthus paradoxus, was able to colonize salt marsh habitats, when both of its parental species (H. annuusxH. petiolaris) are salt sensitive. Here, we report on the results of a quantitative trait locus (QTL) analysis of mineral ion uptake traits and survivorship in 172 BC2 hybrids between H. annuus and H. petiolaris that were planted in H. paradoxus salt marsh habitat in New Mexico. A total of 14 QTLs were detected for mineral ion uptake traits and three for survivorship. Several mineral ion QTLs mapped to the same position as the survivorship QTLs, confirming previous studies, which indicated that salt tolerance in Helianthus is achieved through increased Ca uptake, coupled with greater exclusion of Na and related mineral ions. Of greater general significance was the observation that QTLs with effects in opposing directions were found for survivorship and for all mineral ion uptake traits with more than one detected QTL. This genetic architecture provides an ideal substrate for rapid ecological divergence in hybrid neospecies and offers a simple explanation for the colonization of salt marsh habitats by H. paradoxus. Finally, selection coefficients of +0.126, -0.084 and -0.094 for the three survivorship QTLs, respectively, are sufficiently large to account for establishment of new, homoploid hybrid species. 相似文献