共查询到20条相似文献,搜索用时 0 毫秒
1.
Kathleen A. Graeme-Cook 《FEMS microbiology letters》1991,79(2-3):219-224
The OmpF and OmpC porins are major outer membrane proteins of Escherichia coli. Their expression is affected by medium osmolarity such that OmpF is normally produced at low osmolarity and OmpC at high osmolarity. Potassium ion accumulation is a major means by which cells maintain their internal osmolarity in high osmolarity medium in the absence of organic osmolytes such as glycine-betaine. Starvation for potassium causes cells to become turgor stressed. The effect of turgor stress and potassium ion concentration on OmpF and OmpC expression was examined. It was found that ompF gene expression was switched off by turgor stress but there was no concomitant increase in OmpC. Instead, ompC expression responded to the accumulation of potassium ions by the cell in high osmolarity medium. 相似文献
2.
Marjo Simonen Eveliina Tarkka Ritvaleena Puohiniemi Matti Sarvas 《FEMS microbiology letters》1992,100(1-3):233-242
The secretion of the outer membrane proteins OmpA and OmpF of Escherichia coli has previously been found to be blocked at an early intracellular step, when these proteins were fused to a bacillar signal sequence and expressed in Bacillus subtilis. We have now fused these proteins to long secretable polypeptides, the amino-terminal portions of alpha-amylase or beta-lactamase. In spite of this, no secretion of the fusion proteins was detected in B. subtilis. With the exception of a small fraction of the beta-lactamase fusion, the proteins were cell-bound with uncleaved signal sequences. Protease accessibility indicated that the fusion proteins were not even partially exposed on the outer surface of the cytoplasmic membrane. Thus there was no change of the location compared to the OmpA or OmpF fused to the signal sequence only. We conclude that, like OmpA and OmpF, the fusion proteins fold into an export-incompatible conformation in B. subtilis before the start of translocation, which we postulate to be a late post-translational event. 相似文献
3.
4.
5.
Inés Contreras Lorena Munoz Cecilia S. Toro Guido C. Mora 《FEMS microbiology letters》1995,133(1-2):105-111
Abstract Electrophoretic analysis of outer membrane proteins showed that Salmonella typhi OmpC expression is not reciprocally regulated relative to OmpF as described for Escherichia coli and S. typhimurium . When bacteria were grown in minimal media, both OmpC and OmpF were repressed as the osmolarity increased. However, in Luria broth, expression of OmpC was slightly induced by osmolarity up to 0.3 osmM. Plasmids bearing E. coli ompC-lacZ or ompF-lacZ gene fusions were studied for their expression in S. typhi and E. coli . Under anaerobic growth conditions, expression of ompC-lacZ in S. typhi was maximal at 0.16 osmM, while in E. coli expression was maximal at 0.7 osmM. ompF-lacZ expression was similarly repressed by medium osmolarity and anaerobiosis in both species. In contrast, a drastic difference in the regulation of OmpF by temperature was observed; at 37 °C ompF-lacZ expression was repressed in E. coli . while in S. typhi it was induced. 相似文献
6.
I. Cornet E. Van Derlinden A.M. Cappuyns J.F. Van Impe 《Letters in applied microbiology》2010,51(4):450-455
Aims: When subjected to dynamic temperatures surpassing the expected maximum growth temperature, Escherichia coli K12 MG1655 shows disturbed growth curves. These irregular population dynamics were explained by considering two subpopulations, i.e. a thermoresistant and a thermosensitive one ( Van Derlinden et al. 2010a ). In this paper, the influence of the initial cell concentration on the subpopulations’ dynamics is evaluated. Methods and Results: Experiments were performed in a bioreactor with the temperature increasing from 42 to 65·2°C (1 and 4°C h?1) with varying initial cell concentrations [6, 12 and 18 ln(CFU ml?1)]. When started from the highest cell concentration, the population was characterized by a higher overall maximum growth temperature and a higher inactivation temperature. For all experimental set‐ups, resistant cells were still growing at the final temperature of 65·2°C. Conclusions: The initial cell concentration had no effect on temperature resistance. The increase in temperature resistance of the sensitive subpopulation was because of the change of the physiological state to the stationary phase. Significance and Impact of the Study: A higher initial cell concentration leads to higher heat stress adaptation when cultures reach a maximum cell concentration. The observed growth at a temperature of 65·2°C is very important for food safety and the temperature treatment of micro‐organisms. 相似文献
7.
de Jonge R Takumi K Ritmeester WS van Leusden FM 《Journal of applied microbiology》2003,94(4):555-560
AIMS: To predict and validate survival of non-acid adapted Escherichia coli O157 in an environment mimicking the human stomach. METHODS AND RESULTS: Survival was predicted mathematically from inactivation rates at various, but constant pH values. Predictions were subsequently validated experimentally in a pH-controlled fermentor. Contrary to prediction, acid-sensitive cultures of E. coli O157 survived for a long period of time and died as rapidly as acid-resistant cultures. Experimental results showed that in an environment with changing pH, acid-sensitive cultures became acid-resistant within 17 min. Cyclo fatty acids was reported to be a factor in acid resistance. As synthesis of cyclo fatty acids does not require de novo enzyme synthesis and thus requires little time to develop, we analysed the membrane fatty acid composition of E. coli O157 during adaptation. No changes in membrane fatty acid composition were observed. CONCLUSIONS: Acid adaptation of E. coli O157 can occur during passage of the human gastric acid barrier, which can take up to 4 h. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability of acid-adapted bacteria to survive the human stomach is an important virulence factor. The ability of non-acid adapted E. coli O157 to adapt within a very short period of time under extreme conditions further contributes to the virulence of E. coli O157. 相似文献
8.
The electrophoretic patterns of the outer membrane proteins of agar-entrapped Escherichia coli cells were found to be different from those of free organisms. In particular, the porin protein OmpF was underexpressed in immobilized bacteria, that displayed enhanced resistance to latamoxef. 相似文献
9.
Aims: Previous work showed that the exponential phase of Escherichia coli K12 MG1655, grown in Brain Heart Infusion broth at temperatures close to its maximum growth temperature, is disturbed. Based on plate count data, microscopic images and literature, the existence of a heat-resistant subpopulation was hypothesized. Here, this hypothesis is mathematically explored via a heterogeneous model.
Methods and Results: A heat-sensitive and a heat-resistant subpopulation are considered. A large fraction of the population is inactivated, while the remaining smaller fraction is able to resist (or adapt to) the inimical temperature and grows. A heterogeneous model that encloses a growth model (resistant population) and an inactivation model (sensitive population) is used to describe the global population dynamics. Most experimental data can be predicted when taking parameter uncertainty via Monte Carlo simulation into account.
Conclusions: The heterogeneous model accurately describes disturbed growth curves at superoptimal temperatures, except for high initial cell densities.
Significance and Impact of the Study: This study strengthens the hypothesis of the existence of a (small) heat-resistant subpopulation in typical inoculum cultures of E. coli K12 MG1655. 相似文献
Methods and Results: A heat-sensitive and a heat-resistant subpopulation are considered. A large fraction of the population is inactivated, while the remaining smaller fraction is able to resist (or adapt to) the inimical temperature and grows. A heterogeneous model that encloses a growth model (resistant population) and an inactivation model (sensitive population) is used to describe the global population dynamics. Most experimental data can be predicted when taking parameter uncertainty via Monte Carlo simulation into account.
Conclusions: The heterogeneous model accurately describes disturbed growth curves at superoptimal temperatures, except for high initial cell densities.
Significance and Impact of the Study: This study strengthens the hypothesis of the existence of a (small) heat-resistant subpopulation in typical inoculum cultures of E. coli K12 MG1655. 相似文献
10.
《Bioscience, biotechnology, and biochemistry》2013,77(3):540-545
An acidic-phospholipid deficiency caused by the pgsA3 allele that encodes a defective phosphatidylglycerophosphate synthase in Escherichia coli is lethal. The only known mutations that suppress this lethality fully have been related to the major outer-membrane lipoprotein. We isolated a Bacillus subtilis chromosomal locus that suppresses the lethality when harbored in a low copy-number plasmid, without restoring the synthase activity or phospholipid composition to normal. The locus was first recognized to suppress the conditional lethality of E. coli YA5512 (pgsA3) that harbored an unidentified mutation(s), allowing its growth in LB medium but not in media of lower osmolarities. The locus was then found to suppress the lethality of pgsA3 in wild-type E. coli W3110. This locus, named ypoP in the database, had 37% nucleotide identity with the E. coli mprA gene, but the amplification of mprA had no suppressive effect. Plasmid pPOP1 containing ypoP completely prevented the decrease in the amount of a porin protein, OmpF, in the outer membrane and also cell mucoidy caused by pgsA3. The mechanisms underlying these unusual effects are discussed in relation to a putative stress signal(s) generated by the acidic-phospholipid deficiency. 相似文献
11.
Abstract The synthesis of total cellular proteins in Escherichia coli K12 was studied in batch culture following exposure of cells to low concentrations of monochlorophenol, pentachlorophenol and cadmium chloride. Changes in protein patterns were identified after pulse-chase labelling of proteins with [35 S]methionine and subsequent two-dimensional gel electrophoresis (2D-PAGE). We demonstrated that besides the induction of some stress proteins, also a transient decrease in the rate of synthesis of other proteins occurred. Two of these proteins were identified as OmpF and aspartate transcarbamoylase (ATCase). Their transient repression appeared to be a general response to stress elicited by different pollutants and may therefore be used as a general and sensitive early warning system for pollutant stress. 相似文献
12.
Fuentes AM Díaz-Mejía JJ Maldonado-Rodríguez R Amábile-Cuevas CF 《FEMS microbiology letters》2001,205(2):271-275
When Escherichia coli cells are under superoxide stress, proteins SoxR and SoxS, acting sequentially, control the expression of a set of repair and defense genes. One of these genes, fumC, encoding fumarase C, was reported to be also activated by iron deprivation in a soxRS-dependent manner. However, the same condition failed to induce the expression of a soxS'::lacZ fusion. The expression of acnA (aconitase A) is also activated by SoxR alone when under iron deprivation, but not of sodA (Mn-superoxide-dismutase). SoxR completely inhibited the migration of a DNA fragment containing the promoter region of fumC, in gel-shift experiments. SoxR might bind to a different region than SoxS within the fumC promoter, or an unknown intermediate other than SoxS might be acting. It is possible that the regulatory role of SoxR is more complex than previously considered. 相似文献
13.
Takeshi Mizuno Hiroaki Kasai Shoji Mizushima 《Molecular & general genetics : MGG》1987,207(2-3):217-223
Summary OmpC and OmpF are major outer membrane proteins and although they are homologous proteins, they function differently in several respects. As an approach to elucidate the submolecular structures that determine their differences, we have constructed a series of ompC-ompF chimeric genes by in vivo homologous recombination between these two genes, which are adjacent on a plasmid. The recombination sites in the chimeric genes were localized by means of restriction endonuclease analysis and nucleotide sequence determination. Most of the chimeric gene products were accumulated in the outer membrane. One of the chimeric gene products, with a fusion site in a central region between the OmpC and OmpF proteins, was normally expressed but not accumulated in the outer membrane. The trimeric structures of some of the chimeric gene products appeared to be extremely unstable in a SDS solution. From these results, domains contributing to the formation of specific structures in which the OmpC and OmpF proteins differ were identified. Bacterial cells possessing the chimeric gene products were also investigated as to their sensitivity to phages that require either OmpC or OmpF as a receptor component. With the aid of the chimeric gene products, the immunogenic determinants for three anti-OmpC monoclonal antibodies were found to be localized at different portions of the OmpC polypeptide: the N-terminal, central and C-terminal portions, respectively. 相似文献
14.
AIMS: Cattle are a known main reservoir for acid-resistant Escherichia coli O157 and Salmonella enterica serovar Typhimurium DT104. We studied the response of S. Typhimurium DT104 to extreme low pH environments and compared their response to that of acid-resistant E. coli O157 and other S. Typhimurium phage types. METHODS AND RESULTS: Bacteria were grown in nutrient-rich medium and subsequently acid challenged at pH 2.5. We found that stationary phase cultures of various S. Typhimurium strains were able to survive a challenge for 2 h at pH 2.5. As in E. coli, the ability of S. Typhimurium to survive at pH 2.5 was shown to be dependent on the presence of amino acids, specifically arginine. The amount of proton pumping H+/ATPase, both in E. coli O157 and S. Typhimurium strains, was lower when grown at pH values <6 than after growth at pH 7.5. Cyclo fatty acid content of membranes of bacteria grown at pH values <6 was higher than that of membranes of bacteria grown at pH 7.5. CONCLUSIONS: Various S. Typhimurium strains, both DT104 and non-DT104, are able to survive for a prolonged period of time at pH 2.5. Their response to such low pH environment is seemingly similar to that of E. coli O157. SIGNIFICANCE AND IMPACT OF THE STUDY: Food-borne pathogens like S. Typhimurium DT104 and E. coli O157 form a serious threat to public health since such strains are able to survive under extreme low pH conditions as present in the human stomach. The emergence these acid-resistant strains suggests the presence of a selection barrier. The intestinal tract of ruminants fed a carbohydrate-rich diet might be such a barrier. 相似文献
15.
De Spiegeleer P Sermon J Lietaert A Aertsen A Michiels CW 《Journal of applied microbiology》2004,97(1):124-133
AIMS: To investigate the influence of the source of tryptone in the growth medium on the resistance of Escherichia coli to various types of oxidative stress. METHODS AND RESULTS: Cultures of Escherichia coli MG1655 were grown in Luria-Bertani (LB) medium at 37 degrees C to stationary phase, harvested, and subsequently subjected to various types of oxidative stress. A marked difference in oxidative stress sensitivity was observed depending on the origin of the tryptone in the LB medium used to grow the cultures. Cells harvested from LB containing tryptone from source x (LBx) were more sensitive to inactivation by the superoxide generating compound plumbagin and by t-butyl peroxide, and to growth inhibition by the lactoperoxidase enzyme system, than cells harvested from LB containing tryptone from source y (LBy). By monitoring expression of a panel of stress gene promotors linked to the gfp (green fluorescent protein) gene, and using Delta2-22 alkaline phosphatase as a probe for disulphide bridge formation from protein sulphydryl groups, it was demonstrated that a greater cytoplasmic oxidative stress existed in cells during growth in LBy than in LBx. CONCLUSIONS: Depending on the source of tryptone, bacteria may experience different levels of oxidative stress in tryptone-containing nonselective growth media. Although these levels of oxidative stress are subinhibitory, they may trigger a stress response that makes the bacteria more resistant to a subsequent exposure to a lethal or inhibitory level of oxidative stress. SIGNIFICANCE AND IMPACT OF THE STUDY: This work highlights the importance of controlling very subtle differences in composition of nonselective growth media in studies on bacterial physiology. 相似文献
16.
17.
sucAB and sucCD of Escherichia coli encode enzymes that generate succinyl-CoA from 2-oxoglutarate and succinate, respectively. Their mutual essentiality was studied. sucAB and sucCD could be deleted individually, but not simultaneously. The mutual essentiality of sucAB and sucCD was further confirmed by the conditional expression of sucABCD, sucAB, and sucCD under the control of a P(BAD) in E. coli MG1655, E. coli MG1655 (DeltasucCD), and E. coli MG1655 (DeltasucAB), respectively. These strains grew well in Luria-Bertani medium containing 0.1% arabinose, but not in the absence of arabinose unless the medium was supplemented with succinyl-CoA. Our results indicate that either sucAB or sucCD is enough to produce succinyl-CoA that is essential for cell viability. 相似文献
18.
Details of the mechanism for ribosome synthesis have been incorporated in the single-cell Escherichia coli model, which enable us to predict the amount of protein synthesizing machinery under different environmental conditions. The predictions agree quite well with available experimental data. The model predicts that ribosomal protein limitations are important when the translational apparatus is in high demand. Ribosomal RNA synthesis is induced by an increase in translational activity, which, in turn, stimulates ribosomal protein synthesis. However, as the demand increases still more, the ribosomal protein mRNA must compete with the plasmid mRNA for ribosomes, and the efficiency of translation of ribosomal proteins is reduced. (c) 1994 John Wiley & Sons, Inc. 相似文献
19.
A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli 总被引:1,自引:0,他引:1
Escobar-Páramo P Clermont O Blanc-Potard AB Bui H Le Bouguénec C Denamur E 《Molecular biology and evolution》2004,21(6):1085-1094
In bacteria, the evolution of pathogenicity seems to be the result of the constant arrival of virulence factors (VFs) into the bacterial genome. However, the integration, retention, and/or expression of these factors may be the result of the interaction between the new arriving genes and the bacterial genomic background. To test this hypothesis, a phylogenetic analysis was done on a collection of 98 Escherichia coli/Shigella strains representing the pathogenic and commensal diversity of the species. The distribution of 17 VFs associated to the different E. coli pathovars was superimposed on the phylogenetic tree. Three major types of VFs can be recognized: (1) VFs that arrive and are expressed in different genetic backgrounds (such as VFs associated with the pathovars of mild chronic diarrhea: enteroaggregative, enteropathogenic, and diffusely-adhering E. coli), (2) VFs that arrive in different genetic backgrounds but are preferentially found, associated with a specific pathology, in only one particular background (such as VFs associated with extraintestinal diseases), and (3) VFs that require a particular genetic background for the arrival and expression of their virulence potential (such as VFs associated with pathovars typical of severe acute diarrhea: enterohemorragic, enterotoxigenic, and enteroinvasive E. coli strains). The possibility of a single arrival of VFs by chance, followed by a vertical transmission, was ruled out by comparing the evolutionary histories of some of these VFs to the strain phylogeny. These evidences suggest that important changes in the genome of E. coli have occurred during the diversification of the species, allowing the virulence factors associated with severe acute diarrhea to arrive in the population. Thus, the E. coli genome seems to be formed by an "ancestral" and a "derived" background, each one responsible for the acquisition and expression of different virulence factors. 相似文献
20.
AIMS: The objective was to investigate the occurrence of sublethal injury in Escherichia coli by pulsed electric fields (PEF) at different pH values. METHODS AND RESULTS: The occurrence of sublethal injury in PEF-treated E. coli cells depended on the pH of the treatment medium. Whereas a slight sublethal injury was detected at pH 7, 99.95% of survivors were injured when cells were treated at pH 4 for 400 micros at 19 kV. The PEF-injured cells were progressively inactivated by a subsequent holding at pH 4. CONCLUSIONS: PEF cause sublethal injury in E. coli. The measurement of sublethal injury using a selective medium plating technique allowed prediction of the number of cells that would be inactivated by subsequent storage in acidic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This work could be useful for improving food preservation by PEF technology and contributes to the knowledge of the mechanism of microbial inactivation by PEF. 相似文献