首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human cell extracts efficiently support replication of simian virus 40 (SV40) DNA in vitro, while mouse cell extracts do not. Since human DNA polymerase alpha-primase is the major species-specific factor, we set out to determine the subunit(s) of DNA polymerase alpha-primase required for this species specificity. Recombinant human, mouse, and hybrid human-mouse DNA polymerase alpha-primase complexes were expressed with baculovirus vectors and purified. All of the recombinant DNA polymerase alpha-primases showed enzymatic activity and efficiently synthesized the complementary strand on an M13 single-stranded DNA template. The human DNA polymerase alpha-primase (four subunits [HHHH]) and the hybrid DNA polymerase alpha-primase HHMM (two human subunits and two mouse subunits), containing human p180 and p68 and mouse primase, initiated SV40 DNA replication in a purified system. The human and the HHMM complex efficiently replicated SV40 DNA in mouse extracts from which DNA polymerase alpha-primase was deleted, while MMMM and the MMHH complex did not. To determine whether the human p180 or p68 subunit was required for SV40 DNA replication, hybrid complexes containing only one human subunit, p180 or p68, together with three mouse subunits (HMMM and MHMM) or three human subunits and one mouse subunit (MHHH and HMHH) were tested for SV40 DNA replication activity. The hybrid complexes HMMM and HMHH synthesized oligoribonucleotides in the SV40 initiation assay with purified proteins and replicated SV40 DNA in depleted mouse extracts. In contrast, the hybrid complexes containing mouse p180 were inactive in both assays. We conclude that the human p180 subunit determines host-specific replication of SV40 DNA in vitro.  相似文献   

2.
Mouse cell extracts support vigorous replication of polyomavirus (Py) DNA in vitro, while human cell extracts do not. However, the addition of purified mouse DNA polymerase alpha-primase to human cell extracts renders them permissive for Py DNA replication, suggesting that mouse polymerase alpha-primase determines the species specificity of Py DNA replication. We set out to identify the subunit of mouse polymerase alpha-primase that mediates this species specificity. To this end, we cloned and expressed cDNAs encoding all four subunits of mouse and human polymerase alpha-primase. Purified recombinant mouse polymerase alpha-primase and a hybrid DNA polymerase alpha-primase complex composed of human subunits p180 and p68 and mouse subunits p58 and p48 supported Py DNA replication in human cell extracts depleted of polymerase alpha-primase, suggesting that the primase heterodimer or one of its subunits controls host specificity. To determine whether both mouse primase subunits were required, recombinant hybrid polymerase alpha-primases containing only one mouse primase subunit, p48 or p58, together with three human subunits, were assayed for Py replication activity. Only the hybrid containing mouse p48 efficiently replicated Py DNA in depleted human cell extracts. Moreover, in a purified initiation assay containing Py T antigen, replication protein A (RP-A) and topoisomerase I, only the hybrid polymerase alpha-primase containing the mouse p48 subunit initiated primer synthesis on Py origin DNA. Together, these results indicate that the p48 subunit is primarily responsible for the species specificity of Py DNA replication in vitro. Specific physical association of Py T antigen with purified recombinant DNA polymerase alpha-primase, mouse DNA primase heterodimer, and mouse p48 suggested that direct interactions between Py T antigen and primase could play a role in species-specific initiation of Py replication.  相似文献   

3.
DNA polymerase alpha-primase (pol-prim, consisting of p180-p68-p58-p48), and primase p58-p48 (prim(2)) synthesize short RNA primers on single-stranded DNA. In the SV40 DNA replication system, only pol-prim is able to start leading strand DNA replication that needs unwinding of double-stranded (ds) DNA prior to primer synthesis. At high concentrations, pol-prim and prim(2) indistinguishably reduce the unwinding of dsDNA by SV40 T antigen (Tag). RNA primer synthesis on ssDNA in the presence of replication protein A (RPA) and Tag has served as a model system to study the initiation of Okazaki fragments on the lagging strand in vitro. On ssDNA, Tag stimulates whereas RPA inhibits the initiation reaction of both enzymes. Tag reverses and even overcompensates the inhibition of primase by RPA. Physical binding of Tag to the primase subunits and RPA, respectively, is required for these activities. Each subunit of the primase complex, p58 and p48, performs physical contacts with Tag and RPA independently of p180 and p68. Using surface plasmon resonance, the dissociation constants of the Tag/pol-prim and Tag/primase interactions were 1.2 x 10(-8) m and 1.3 x 10(-8) m, respectively.  相似文献   

4.
We characterized the primase complex of the hyperthermophilic archaeon, Pyrococcus furiosus. The two proteins, Pfup41 and Pfup46, have similar sequences to the p48 and p58 subunits, respectively, of the eukaryotic DNA polymerase alpha-primase complex. Unlike previously reported primases, the Pfup41 preferentially utilizes deoxyribonucleotides for its de novo synthesis, and moreover, it synthesizes up to several kilobases in length in a template-dependent manner (Bocquier, A., Liu, L., Cann, I., Komori, K., Kohda, D., and Ishino, Y. (2001) Curr. Biol. 11, 452-456). The p41-p46 complex showed higher DNA binding activity than the catalytic p41 subunit alone. In addition, the amount of DNA synthesized by the p41-p46 complex was much more abundant and shorter in length than that by Pfup41 alone. The activity for RNA primer synthesis, which was not detected with Pfup41, was observed from the reaction using the p41-p46 complex in vitro. The in vitro replication of M13 single-stranded DNA by the P. furiosus proteins was stimulated by ATP. Observation of the labeled primers by using [gamma-(32)P]ATP in the substrates suggests ATP as the preferable initiating nucleotide for the p41-p46 complex. These results show that the primer synthesis activity of Pfup41 is regulated by Pfup46, and the p41-p46 complex may function as the primase in the DNA replication machinery of P. furiosus, in a similar fashion to the eukaryotic polymerase alpha-primase complex.  相似文献   

5.
DNA polymerase alpha-primase (pol-prim) is the only enzyme that can start DNA replication de novo. The 180-kDa (p180) and 68-kDa (p68) subunits of the human four-subunit enzyme are phosphorylated by Cyclin-dependent kinases (Cdks) in a cell cycle-dependent manner. Cyclin A-Cdk2 physically interacts with pol-prim and phosphorylates N-terminal amino acids of the p180 and the p68 subunits, leading to an inhibition of pol-prim in initiating cell-free SV40 DNA replication. Mutation of conserved putative Cdk phosphorylation sites in the N terminus of human p180 and p68 reduced their phosphorylation by Cyclin A-Cdk2 in vitro. In contrast to wild-type pol-prim these mutants were no longer inhibited by Cyclin A-Cdk2 in the initiation of viral DNA replication. Importantly, rather than inhibiting it, Cyclin A-Cdk2 stimulated the initiation activity of pol-prim containing a triple N-terminal alanine mutant of the p180 subunit. Together these results suggest that Cyclin A-Cdk2 executes both stimulatory and inhibitory effects on the activity of pol-prim in initiating DNA replication.  相似文献   

6.
DNA polymerase α-primase is a replication enzyme necessary for DNA replication in all eukaryotes examined so far. Mouse DNA polymerase α is made up of four subunits, the largest of which is the catalytic subunit with a molecular mass of 180 kDa (p180). This subunit exists as a tight complex with the second-largest subunit (p68), whose physiological role has remained unclear up until now. We set out to characterize these subunits individually or in combination by using a cDNA expression system in cultured mammalian cells. Coexpression of p68 markedly increased the protein level of p180, with the result that ectopically generated DNA polymerase activity was dramatically increased. Immunofluorescence analysis showed that while either singly expressed p180 or p68 was localized in the cytoplasm, cotransfection of both subunits resulted in colocalization in the nucleus. We identified a putative nuclear localization signal for p180 (residues 1419 to 1437) and found that interaction with p68 is essential for p180 to translocate into the nucleus. These results indicate that association of p180 with p68 is important for both protein synthesis of p180 and translocation into the nucleus, implying that p68 plays a pivotal role in the newly synthesized DNA polymerase α complex.  相似文献   

7.
DNA polymerase alpha-primase (pol-prim) is a heterotetramer with DNA polymerase and primase activities. The polymerase (p180) and primase (p48 and p58) subunits synthesize primers and extend them, but the function of the remaining subunit (p68) is poorly understood. Genetic studies in yeast suggested an essential role for the p68 ortholog in early S phase prior to the hydroxyurea-sensitive step, possibly a regulatory role in initiation of DNA replication, but found no evidence for an essential function of p68 later in S phase. To investigate whether the human p68 subunit has an essential role in DNA replication, we examined the ability of a purified trimeric human pol-prim lacking p68 to initiate simian virus 40 DNA replication in vitro and to synthesize and elongate primers on single-stranded DNA in the presence of T antigen and replication protein A (RPA). Both activities of trimeric pol-prim were defective, but activity was recovered upon addition of separately purified p68. Phosphorylation of p68 by cyclin A-dependent protein kinase also inhibited both activities of pol-prim. The data strongly suggest that the p68 subunit is required for priming activity of pol-prim in the presence of RPA and T antigen, both during initiation at the origin and during lagging strand replication.  相似文献   

8.
DNA polymerase alpha (pol-alpha) is a heterotetrameric enzyme (p180-p68-p58-p48 in mouse) that is essential for the initiation of chain elongation during DNA replication. The catalytic (p180) and p68 subunits of pol-alpha are phosphorylated by Cdk-cyclin complexes, with p68 being hyperphosphorylated by cyclin-dependent kinases in G(2) phase of the cell cycle. The activity of Cdk2-cyclin A increases during late S phase and peaks in G(2) phase. We have now examined the role of p68 in the interaction between the catalytic subunit of pol-alpha and hyperphosphorylated retinoblastoma protein (ppRb) and in the stimulation of the polymerase activity of pol-alpha by ppRb. With the use of recombinant proteins, we found that nonphosphorylated p68 inhibited the stimulation of pol-alpha activity by ppRb, suggesting that p68 might impede the association of ppRb with p180. Phosphorylation of p68 by Cdk2-cyclin A greatly reduced its inhibitory effect. Immunofluorescence analysis also revealed that ppRb localized at sites of DNA replication specifically in late S phase. These results suggest that Cdk-cyclin A can phosphorylate pol-alpha which may result in a conformational change in pol-alpha facilitating its interaction with and activation by ppRb.  相似文献   

9.
We have carried out a domain analysis of POL32, the third subunit of Saccharomyces cerevisiae DNA polymerase delta (Pol delta). Interactions with POL31, the second subunit of Pol delta, are specified by the amino-terminal 92 amino acids, whereas interactions with the replication clamp proliferating cell nuclear antigen (PCNA, POL30) reside at the extreme carboxyl-terminal region. Pol32 binding, in vivo and in vitro, to the large subunit of DNA polymerase alpha, POL1, requires the carboxyl-proximal region of Pol32. The amino-terminal region of Pol32 is essential for damage-induced mutagenesis. However, the presence of its carboxyl-terminal PCNA-binding domain enhances the efficiency of mutagenesis, particularly at high loads of DNA damage. In vitro, in the absence of effector DNA, the PCNA-binding domain of Pol32 is essential for PCNA-Pol delta interactions. However, this domain has minimal importance for processive DNA synthesis by the ternary DNA-PCNA-Pol delta complex. Rather, processivity is determined by PCNA-binding domains located in the Pol3 and/or Pol31 subunits. Using diagnostic PCNA mutants, we show that during DNA synthesis the carboxyl-terminal domain of Pol32 interacts with the carboxyl-terminal region of PCNA, whereas interactions of the other subunit(s) of Pol delta localize largely to a hydrophobic pocket at the interdomain connector loop region of PCNA.  相似文献   

10.
B Arezi  B W Kirk  W C Copeland  R D Kuchta 《Biochemistry》1999,38(39):12899-12907
Regulation of the p49-p58 primase complex during primer synthesis and the interaction of the primase subunits with DNA were examined. After primase synthesizes a primer that DNA polymerase alpha (pol alpha) can readily elongate, further primase activity is negatively regulated. This occurs within both the context of the four-subunit pol alpha-primase complex and in the p49-p58 primase complex, indicating that the newly generated primer-template species need not interact with pol alpha to regulate further primase activity. Photo-cross-linking of single-stranded DNA-primase complexes revealed that whereas the isolated p49 and p58 subunits both reacted with DNA upon photolysis, only the p58 subunit reacted with the DNA when photolysis was performed using the p49-p58 primase complex. After primer synthesis by the complex, p58 was again the only subunit that reacted with the DNA. These results suggest a model for regulation of primer synthesis in which the newly synthesized primer-template species binds to p58 and regulates further primer synthesis. Additionally, the ability of p58 to interact with primer-template species suggests that p58 mediates the transfer of primers from the primase active site to pol alpha.  相似文献   

11.
Human cell extracts support the replication of SV40 DNA, whereas mouse cell extracts do not. Species specificity is determined at the level of initiation of DNA replication, and it was previously found that this requires the large subunit, p180, of DNA polymerase alpha-primase to be of human origin. Furthermore, a functional interaction between SV40 large T antigen (TAg) and p180 is essential for viral DNA replication. In this study we determined that the N-terminal regions of human p180, which contain the TAg-binding sites, can be replaced with those of murine origin without losing the ability to support SV40 DNA replication in vitro. The same substitutions do not prevent SV40 TAg from stimulating the activity of DNA polymerase alpha-primase on single-stranded DNA in the presence of replication protein A. Furthermore, biophysical studies show that the interactions of human and murine DNA polymerase alpha-primase with SV40 TAg are of a similar magnitude. These studies strongly suggest that requirement of SV40 DNA replication for human DNA polymerase alpha depends neither on the TAg-binding site being of human origin nor on the strength of the binary interaction between SV40 TAg and DNA polymerase alpha-primase but rather on sequences in the C-terminal region of human p180.  相似文献   

12.
13.
The human DNA polymerase alpha catalytic polypeptide has been functionally overexpressed by a recombinant baculovirus in insect cells at greater than 1000-fold higher levels than that found in cultured normal human cells. The recombinant polymerase alpha protein is translated from its natural translation start codon under the control of the baculovirus polyhedron promoter producing a protein of 180 kDa, identical in size to that isolated from cultured human cells. This recombinant polymerase alpha is phosphorylated and reactive to a panel of monoclonal antibodies directed against the native polymerase alpha-primase complex and to polyclonal antisera against N- and C-terminal peptides of the polymerase alpha catalytic polypeptide. The recombinant enzyme was immunopurified from insect cells as a single polypeptide. The single subunit recombinant polymerase alpha has no detectable 3'-5' exonuclease activity. The Km for primer-template and dNTP, reactivity to inhibitors, N2-(p-n-butylphenyl)-dGTP (BuPdGTP) and aphidicolin, thermosensitivity, and DNA synthetic processivity and fidelity of the recombinant polymerase alpha are identical to that observed with the four-subunit polymerase alpha-primase complex immunopurified from cultured human cells. These results strongly suggest that the presence of the other subunits, (the p70 and the two primase subunits, p48 and p58), does not influence kinetic parameters of polymerase alpha catalysis, sensitivity to inhibitors, or DNA synthetic fidelity and processivity.  相似文献   

14.
A peptide encompassing the N-terminal 82 amino acids of simian virus 40 (SV40) large T antigen was previously shown to bind to the large subunit of DNA polymerase alpha-primase (I. Dornreiter, A. Höss, A. K. Arthur, and E. Fanning, EMBO J. 9:3329-3336, 1990). We report here that a mutant T antigen, T83-708, lacking residues 2 to 82 retained the ability to bind to DNA polymerase alpha-primase, implying that it carries a second binding site for DNA polymerase alpha-primase. The mutant protein also retained ATPase, helicase, and SV40 origin DNA-binding activity. However, its SV40 DNA replication activity in vitro was reduced compared with that of wild-type protein. The reduction in replication activity was accompanied by a lower DNA-binding affinity to SV40 origin sequences and aberrant oligomerization on viral origin DNA. Thus, the first 82 residues of SV40 T antigen are not strictly required for its interaction with DNA polymerase alpha-primase or for DNA replication function but may play a role in correct hexamer assembly and efficient DNA binding at the origin.  相似文献   

15.
16.
The molecular masses of two of the four DNA polymerase alpha-primase complex subunit peptides from various mammalian cells have been compared through the use of specific monoclonal antibodies. One monoclonal antibody (E4) binds to 77-kDa peptide from HeLa cells and cognate peptides from other mammalian cells (monkey, mouse, bovine, Indian muntjac, and hamster). Another monoclonal antibody (A5) binds the 180-kDa type peptide and its degradation product (160-kDa peptide) of the mammalian DNA polymerase alpha-primase complexes. Neither of these antibodies reacts with DNA polymerase alpha-primase complex from chicken cells. Comparative immunoblot analysis indicates that the molecular masses of the two main peptides of DNA polymerase alpha-primase complex isolated from the various mammalian sources are in excellent agreement with each other, except for the 77-kDa type peptide from bovine and Indian muntjac cells which was found to be significantly smaller (68 kDa) in these cases. The small molecular mass of bovine 77-kDa type peptide is not attributable to the action of a protease which may be present in the extract of bovine cells.  相似文献   

17.
The 100-kDa "a" subunit of the vacuolar proton-translocating ATPase (V-ATPase) is encoded by two genes in yeast, VPH1 and STV1. The Vph1p-containing complex localizes to the vacuole, whereas the Stv1p-containing complex resides in some other intracellular compartment, suggesting that the a subunit contains information necessary for the correct targeting of the V-ATPase. We show that Stv1p localizes to a late Golgi compartment at steady state and cycles continuously via a prevacuolar endosome back to the Golgi. V-ATPase complexes containing Vph1p and Stv1p also differ in their assembly properties, coupling of proton transport to ATP hydrolysis, and dissociation in response to glucose depletion. To identify the regions of the a subunit that specify these different properties, chimeras were constructed containing the cytosolic amino-terminal domain of one isoform and the integral membrane, carboxyl-terminal domain from the other isoform. Like the Stv1p-containing complex, the V-ATPase complex containing the chimera with the amino-terminal domain of Stv1p localized to the Golgi and the complex did not dissociate in response to glucose depletion. Like the Vph1p-containing complex, the V-ATPase complex containing the chimera with the amino-terminal domain of Vph1p localized to the vacuole and the complex exhibited normal dissociation upon glucose withdrawal. Interestingly, the V-ATPase complex containing the chimera with the carboxyl-terminal domain of Vph1p exhibited a higher coupling of proton transport to ATP hydrolysis than the chimera containing the carboxyl-terminal domain of Stv1p. Our results suggest that whereas targeting and in vivo dissociation are controlled by sequences located in the amino-terminal domains of the subunit a isoforms, coupling efficiency is controlled by the carboxyl-terminal region.  相似文献   

18.
Models of DNA replication in yeast and Xenopus suggest that Mcm10p is required to generate the pre-initiation complex as well as progression of the replication fork during the elongation of DNA chains. In this report, we show that the Schizosaccharomyces pombe Mcm10p/Cdc23p binds to the S. pombe DNA polymerase (pol) alpha-primase complex in vitro by interacting specifically with the catalytic p180 subunit and stimulates DNA synthesis catalyzed by the pol alpha-primase complex with various primed DNA templates. We investigated the mechanism by which Mcm10p activates the polymerase activity of the pol alpha-primase complex by generating truncated derivatives of the full-length 593-amino acid Mcm10p. Their ability to stimulate pol alpha polymerase activity and bind to single-stranded DNA and to pol alpha were compared. Concomitant with increased deletion of the N-terminal region (from amino acids 95 to 415), Mcm10p derivatives lost their ability to stimulate pol alpha polymerase activity and bind to single-stranded DNA. Truncated derivatives of Mcm10p containing amino acids 1-416 retained the pol alpha binding activity, whereas the C terminus, amino acids 496-593, did not. These results demonstrate that both the single-stranded DNA binding and the pol alpha binding properties of Mcm10p play important roles in the activation. In accord with these findings, Mcm10p facilitated the binding of pol alpha-primase complex to primed DNA and formed a stable complex with pol alpha-primase on primed templates. A mutant that failed to activate or bind to DNA and pol alpha, was not observed in this complex. We suggest that the interaction of Mcm10p with the pol alpha-primase complex, its binding to single-stranded DNA, and its activation of the polymerase complex together contribute to its role in the elongation phase of DNA replication.  相似文献   

19.
Tropomodulin 1 (Tmod1) is a approximately 40-kDa tropomyosin binding and actin filament pointed end-capping protein that regulates pointed end dynamics and controls thin filament length in striated muscle. In vitro, the capping affinity of Tmod1 for tropomyosin-actin filaments (Kd approximately 50 pm) is several thousand-fold greater than for capping of pure actin filaments (Kd approximately 0.1 microM). The tropomyosin-binding region of Tmod1 has been localized to the amino-terminal portion between residues 1 and 130, but the location of the actin-capping domain is not known. We have now identified two distinct actin-capping regions on Tmod1 by testing a series of recombinant Tmod1 fragments for their ability to inhibit actin elongation from gelsolin-actin seeds using pyrene-actin polymerization assays. The carboxyl-terminal portion of Tmod1 (residues 160-359) contains the principal actin-capping activity (Kd approximately 0.4 microM), requiring residues between 323 and 359 for full activity, whereas the amino-terminal portion of Tmod1 (residues 1-130) contains a second, weaker actin-capping activity (Kd approximately 1.8 microM). Interestingly, 160-359 but not 1-130 enhances spontaneous actin nucleation, suggesting that the carboxyl-terminal domain may bind to two actin subunits across the actin helix at the pointed end, whereas the amino-terminal domain may bind to only one actin subunit. On the other hand, the actin-capping activity of the amino-terminal but not the carboxyl-terminal portion of Tmod1 is enhanced several thousand-fold in the presence of skeletal muscle tropomyosin. We conclude that the carboxyl-terminal capping domain of Tmod1 contains a TM-independent actin pointed end-capping activity, whereas the amino-terminal domain contains a TM-regulated pointed end actin-capping activity.  相似文献   

20.
Mcm10 plays a key role in initiation and elongation of eukaryotic chromosomal DNA replication. As a first step to better understand the structure and function of vertebrate Mcm10, we have determined the structural architecture of Xenopus laevis Mcm10 (xMcm10) and characterized each domain biochemically. Limited proteolytic digestion of the full-length protein revealed N-terminal-, internal (ID)-, and C-terminal (CTD)-structured domains. Analytical ultracentrifugation revealed that xMcm10 self-associates and that the N-terminal domain forms homodimeric assemblies. DNA binding activity of xMcm10 was mapped to the ID and CTD, each of which binds to single- and double-stranded DNA with low micromolar affinity. The structural integrity of xMcm10-ID and CTD is dependent on the presence of bound zinc, which was experimentally verified by atomic absorption spectroscopy and proteolysis protection assays. The ID and CTD also bind independently to the N-terminal 323 residues of the p180 subunit of DNA polymerase alpha-primase. We propose that the modularity of the protein architecture, with discrete domains for dimerization and for binding to DNA and DNA polymerase alpha-primase, provides an effective means for coordinating the biochemical activities of Mcm10 within the replisome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号