首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Michael A. Grusak 《Planta》1995,197(1):111-117
To understand the whole-plant processes which influence the Fe nutrition of developing seeds, we have characterized root Fe(III)-reductase activity and quantified whole-plant Fe balance throughout the complete 10-week (10-wk) life cycle of pea (Pisum sativum L., cv. Sparkle). Plants were grown hydroponically in complete nutrient solution with a continuous supply of chelated Fe; all side shoots were removed at first appearance to yield plants with one main shoot. Root Fe(III)-reductase activity was assayed with Fe(III)-EDTA. Flowering of the experimental plants began on wk 4 and continued until wk 6; seed growth and active seed import occurred during wks 5–10. Vegetative growth terminated at wk 6. Iron(III) reduction in whole-root systems was found to be dynamically modulated throughout the plant's life cycle, even though the plants were maintained on an Fe source. Iron(III)-reductase activity ranged from 1–3 mol Fe reduced · g –1 DW · h–1 at early and late stages of the life cycle to 9.5 mol Fe reduced · g–1 DW · h–1 at wk 6. Visual assays demonstrated that Fe(III)-reductase activity was localized to extensive regions of secondary and tertiary lateral roots during this peak activity. At midstages of growth (wks 6–7), root Fe(III)-reductase activity could be altered by changes in internal shoot Fe demand or external root Fe supply: removal of all pods or interruption of phloem transport from the reproductive portion of the shoot (to the roots) resulted in lowered root Fe(III)-reductase activity, while removal of Fe from the nutrient solution resulted in a stimulation of this activity. Total shoot Fe content increased throughout the 10-wk growth period, with Fe content in the non-seed tissues of the shoot declining by 50% of their maximal level and accounting for 35% of final seed Fe content. At maturity, total seed Fe represented 74% of total shoot Fe; total Fe in the roots (apoplasmic and symplasmic Fe combined) was minimal. These studies demonstrate that the root Fe(III)-reductase system responds to Fe status and/or Fe requirements of the shoot, apparently through shoot-to-root communication involving a phloem-mobile signal. During active seed-fill, enhanced root Fe(III)-reductase activity is necessary to generate sufficient Fe2+ for continued root Fe acquisition. This continuing Fe supply to the shoot is essential for the developing seeds to attain their Fe-content potential. Increased rates of root Fe(III) reduction would be necessary for seed Fe content to be enhanced in Pisum sativum.Abbreviations BPDS bathophenanthrolinedisulfonic acid - DAF days after flowering - DW dry weight - EDDHA N,N-ethylenebis[2-(2-hydroxyphenyl)-glycine] - wk week This project has been funded in part with federal funds from the U.S. Department of Agriculture, Agricultural Research Service under Cooperative Agreement number 58-6250-1-003. The contents of this publication do not necessarily reflect the views or policies of the U.S. Department of Agriculture, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. The author wishes to acknowledge S. Pezeshgi and K. Koch for their excellent technical assistance, L. Loddeke for editorial comments, and A. Gillum for assistance with the figures.  相似文献   

2.
Stimulation of root Fe(III) reductase activity by iron additions to iron-deficient growth media may be the result of iron activation of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase required for ethylene biosynthesis. Two different ethylene inhibitors, aminooxyacetic acid (AOA) (20 m; ACC synthase inhibitor) and cobalt (3 m CoCl2; ACC oxidase inhibitor), were used to study the effects of iron supply and cobalt inhibition on ethylene action in controlling the activity of Fe(III)-chelate reductase in pea (Pisum sativum L.) roots. Supplying 20 gm m Fe(III)-N,N-ethylenebis[2-(2-hydroxypheyl)-glycine [Fe(III)-EDDHA] to either cobalt-treated, iron-deficient Sparkle (normal parent) or E107 (brz mutant genotype) pea seedlings reversed the negative effects of cobalt on root Fe(III)-reductase activity. Re-supplying 20 m Fe(III)-EDDHA to iron-deficient, AOA-treated seedlings did not enhance root Fe(III)-reductase. Apparently, cobalt competes with iron for the active site in ACC oxidase during ethylene synthesis. Inhibition of root reductase activity by cobalt treatment lowered manganese, zinc, magnesium and potassium content of mutant E107 pea seedlings. In contrast, iron enhancement of root reductase activity in iron-deficient, cobalt-treated E107 seedlings resulted in higher seedling accumulations of manganese, zinc, magnesium and potassium. These results support the hypothesis that root cell plasma membrane reductase activity plays a role in cation uptake by root cells.  相似文献   

3.
Hymenoscyphus ericae survived in liquid media containing up to 500 g/ml iron (Fe), Mycorrhizal seedlings of Vaccinium macrocarpon showed higher yields and lower shoot Fe levels and exhibited less severe toxicity symptoms than nonmycorrhizal seedlings.  相似文献   

4.
High performance liquid chromatography analysis of different parts of Sclerotium rolfsii-infected and healthy seedlings of chickpea (Cicer arietinum) was carried out to examine the status of phenolic compounds. Three major peaks that appeared consistently were identified as gallic, vanillic and ferulic acids. Gallic acid concentrations were increased in the leaves and stems of infected plants compared to healthy ones. Vanillic acid detected in stems and leaves of healthy seedlings was not detected in infected seedlings. There was a significant increase of ferulic acid in those stem portions located above the infected collar region compared to minimal amounts in the roots of healthy seedlings. In vitro studies of ferulic acid showed significant antifungal activity against S. rolfsii. Complete inhibition of mycelial growth was observed with 1000 g of ferulic acid/ml. Lower concentrations (250, 500 and 750 g/ml) were also inhibitory and colony growth was compact in comparison with the fluffy growth of normal mycelium. Higher amounts of phenolics were found in the stems and leaves of S. rolfsii-infected seedlings in comparison to the healthy ones. A role for ferulic acid in preventing infections by S. rolfsii in the stems and leaves of chickpea plants above the infection zone is therefore feasible.  相似文献   

5.
Seven day old seedlings of Pisum sativum L., cv. Kleine Rheinländerin, were wilted for 3 days. After partially removing the roots, they were rewatered and at the same time radioactive abscisic acid([1-14C]ABA, spec. activity 1.7·108d s-1mmol-1) was applied for 1 h via the xylem of the roots. After 24 h, 4 days, and 12 days the seedlings were extracted and the metabolites of ABA were analyzed by means of thin-layer and gas chromatography in combination with mass spectrometry, autoradiography, and scintillation counting. Phaseic acid (PA) and dihydrophaseic acid (DPA) were identified as metabolites of ABA. The presence of another ABA-metabolite was also demonstrated. From its mass spectrum it has been postulated that this metabolite is 4-desoxy-ABA. In addition to these substances, several other metabolites, which are more polar than ABA and its known degradation products, were present in the seedlings. The quantity and number of these unknown metabolites increased with time.Abbreviations ABA abscisic acid - PA phaseic acid - DPA dihydrophaseic acid - TLC thin-layer chromatography - GC gas chromatography - PPO 2,5-diphenyloxazole - POPOP 2,2-p-phenylen bis(5-phenyloxazole)  相似文献   

6.
In the present study we investigated the response to iron (Fe) deficiency in two cultivars of Festuca rubra L. (Rubina and Barnica) used in correction of chlorosis of fruit trees cultivated on calcareous soils. We found that a Fe-chelating compound, identified as 2-deoxymugineic acid (DMA), was secreted from the roots in response to Fe-deficiency in both cultivars. The amount of DMA secreted into solution increased with the development of Fe-deficiency. The secretion showed a distinct diurnal rhythm characterized by a secretion peak at between 2 and 5 hours after sunrise at 20°C. However, this secretion peak was delayed by 3 hour at low temperature (<10°C) and occurred 3 h earlier at high temperature (30°C). When water used for the collection of root exudates was pre-warmed (25°C) or pre-cooled (10°C), this led to an earlier or a delayed secretion compared to control (15°C) under the same air temperature, respectively. Short-term shading treatment did not affect the secretion pattern of DMA. These results demonstrate that the secretion time of DMA from the roots is, at least partly controlled by the temperature in the root environment. Overall, these findings suggest that the ability of Festuca rubra to prevent Fe chlorosis symptoms (`re-greening effect') of associated fruit trees is partially related to the secretion of DMA which increase Fe availability in calcareous soils.  相似文献   

7.
The effects of Ni and Cd on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings were investigated in a pot experiment. Seedlings were either inoculated with Laccaria bicolor (Maire) Orton or left uninoculated before being planted in pots containing a mixture of sandy soil from the B-horizon of a coniferous forest, small stones and pure quartz sand. The pots were supplied with small amounts of a balanced nutrient solution every 24 h using peristaltic pumps. Nickel or Cd were added as chlorides to the nutrient solution at levels of 85 M Ni (Ni 1), 170 M Ni (Ni 2), or 8.9 M Cd. Mycorrhizal colonisation of the roots was nearly 100% in the mycorrhizal treatments. The mycorrhizal seedlings grew significantly better than the non-mycorrhizal ones. The weight of mycorrhizal seedlings in the Ni 2 treatment was 29% lower than that of the mycorrhizal controls, but still 34% greater than that of the non-mycorrhizal seedlings not exposed to metals. There was an overall, statistically significant, negative effect of metals on plant yield. Mycorrhizal plants had lower root:shoot (R:S) ratios than non-mycorrhizal plants and the R:S ratio was increased by metal exposure, particularly in the non-mycorrhizal seedlings. Plant concentrations of Cd or Ni were not affected by mycorrhizal colonisation, but total uptake of Cd and Ni was higher in bigger mycorrhizal seedlings. Nickel decreased P concentration in all seedlings and Cd decreased P concentration in the non-mycorrhizal seedlings. Generally, the mycorrhizal seedlings grew better than non-mycorrhizal ones and had better P, K, Mg and S status. Root growth was not significantly affected by the metal treatments. The reduction in mean shoot growth of non-mycorrhizal plants, relative to the metal-free control, appeared higher than in mycorrhizal plants but was not statistically significant due to high variation in the non-mycorrhizal plants not exposed to metals. The main mycorrhizal effect was thus increased nutrient uptake and growth of the seedlings.  相似文献   

8.
A genetically related response to iron deficiency stress in muskmelon   总被引:1,自引:0,他引:1  
A mutant muskmelon (Cucumis melo L.) with characteristic Fe-deficiency chlorosis symptoms was compared to related cultivars in its ability to obtain Fe via the widely known Fe-stress response mechanisms of dicotyledonous plants. The three cultivars (fefe, the Fe-inefficient mutant; Mainstream and Edisto, both Fe efficient plants) were grown in nutrient solution in either 0 or 3.5 mg L-1 Fe as FeCl3. None of the three cultivars released reductants or phytosiderophores, but both Edisto and Mainstream produced massive amounts of H+ ions to reduce and maintain the pH of nutrient solutions below pH 4.0. The roots of these two Fe-efficient cultivars were also capable of reducing Fe3+ to Fe2+. These responses maintained green plants, resulted in high leaf Fe in both Edisto and Mainstream, and produced Mn toxicity in Mainstream. The lack of Fe-deficiency stress response in fefe not only affected leaf Fe concentration and chlorosis, but also resulted in reduced uptake of Mn. The importance of reduced Fe (Fe2+) to the Fe-efficient cultivars was confirmed by growing the cultivars with BPDS (4, 7-diphenyl-1, 10-phenanthroline disulfonic acid, a ferrous chelator) and EDDHA [ethylene-diamine di (0-hydroxphenylacetic acid)] (a ferric chelator), and observing increased chlorosis and reduced Fe uptake in BPDS grown plants. The Fe-deficiency response observed in these cultivars points out the diversity of responses to Fe deficiency stress in plants. The fefe mutant has a limited ability to absorb Fe and Mn and perhaps could be used to better understand Mn uptake in plants.  相似文献   

9.
The apoplasmic and symplasmic iron pools were determined in roots and leaves of Lycopersicon esculentum Mill. cv. Bonner Beste and its mutant chloronerva. The mutant is auxotrophic for the ubiquitous plant constituent nicotianamine (NA) and exhibits an impaired iron metabolism. Formation of apoplasmic iron pools in roots was dependent on the iron source in the nutrient solution. With Fe-ethylenediaminedi-(2-hydroxyphenylacetate) (FeEDDHA) only a very small apoplasmic iron pool was formed in the roots of both genotypes. Plants grown with FeEDTA increased their apoplasmic iron pool with increasing exogenous iron concentrations in the nutrient solution. The size of the apoplasmic pools in roots did not differ between the wild-type and the mutant (about 85 mol Fe · g–1 DW). By contrast, the symplasmic iron concentrations in roots and leaves of the mutant were significantly higher when compared to the wild-type. An exogenous NA supply to the leaves of the mutant reduced the high symplasmic iron concentrations to the level of the wild-type. Mutant leaves exhibited a gradient of symplasmic iron concentrations depending on the developmental age of the leaves. The oldest leaves contained considerably more symplasmic iron than the youngest. The results demonstrate that the apparent iron deficiency of the mutant is not the consequence of an impaired iron transport from the apoplasm to the symplasm. Therefore, it is concluded that NA is not required for the transport of Fe(II) through the plasmalemma into the cell.Abbreviations BPDS bathophenanthroline disulfonic acid, Na2 salt - FeEDDHA ferric N-N-ethylenediaminedi-(2-hydroxy-phenylacetate) - NA nicotianamine Part 40 in the series The normalizing factor for the tomato mutant chloronerva. For part 39 see Pich et al. (1991)The valuable technical assistance of Mrs. Christa Kallas and Mr. Günter Faupel is gratefully acknowledged.  相似文献   

10.
Sunflower (Helianthus annuus L.) has been classified as a Fe-efficient species; however differences have been reported in susceptibility to Fe deficiency stress among cultivars and inbred lines. This paper reports research on responses of inbred lines to Fe deficiency stress (release of protons and root capacity to reduce Fe). When plants were grown individually in aerated nutrient solution without Fe the new selected inbred lines were classified as: a) Lines with good Fe deficiency stress response (RHA 271, RHA 273 and RHA 274); b) Lines that did not lower root external pH (HA 89 and RHA 299), one with very low reducing capacity (HA 89) and the other with reducing capacity (RHA 299); and c) One segregating line (RHA 276) from which two sister lines were selected. When a buffer (5 mM MES, 2-(N- morpholino) ethanesulfonic acid) was added to the root nutrient solution without Fe during growth, the reducing capacity of Fe-inefficient lines was higher for buffered than for unbuffered roots. Therefore, differences among lines for reducing capacity depend on experimental conditions.  相似文献   

11.
Factors associated with the production of extracellular lipase and proteinase by Pseudomonas fluorescens B52 during the late-log, early-stationary phase of grown were examined. Active lipase production by resting cell suspensions was observed when cells were harvested during the log phase (A600 of 0.3–0.9) Resting suspensions of younger cells (A600<0.1) synthesized lipase after a significant lag. Addition of cells of the proteinase-and lipasedeficient mutant P. fluorescens RM14 to B52 cells at low density resulted in stimulation of lipase and proteinase production. Similar results were found using cell-free culture fluid of RM14. Gel filtration on Biogel P2 revealed that the stimulatory factor co-chromatographed with the iron(III) siderophore, pyoverdine. Partially purified pyoverdine stimulated enzyme synthesis at a concentration of 6 M while having no effect on activity of preformed enzyme. Production of pyoverdine and extracellular enzymes was also stimulated by transferrin, a strong iron(III) binding protein. Growth of B52 in deferrated media was limited to 27% of that found with untreated media. Maximum pyoverdine, proteinase and lipase synthesis was obtained at a final iron(III) concentration of 5.75 M. Growth was maximal in 8.75 M iron(III) while synthesis of pyoverdine, proteinase and lipase was reduced to 3.6, 6.6 and 30% respectively in 23.75 M iron(III). Lipase activity in cell-free culture fluid was slightly inhibited by the addition of up to 400 M iron(III) while proteinase activity was unaffected. In dilute cell suspensions, lipase synthesis was more sensitive to iron(III) than was proteinase (50% inhibition at 1.6 M and a maximum of 40% inhibition at 5.0 M, respectively). In the case of lipase, added pyoverdine was able to partially protect enzyme production from the effects of iron(III). The results are consistent with a role for iron(III) in the regulation of extracellular lipase and proteinase synthesis by P. fluorescens.Contribution No. 677 from the Food Research Centre  相似文献   

12.
Maximum shoot induction from stem explants ofCanavalia lineata was obtained with an agar-solidified PC medium containing 10 M benzylaminopurine and 1 M naphthaleneacetic acid. Rooting of thesein vitro produced shoots was achieved with hormone-free PC medium. Canavanine was produced almost exclusively in the leaves and was not detected in the roots ofin vitro propagatedC. lineata. To exclude the possibility of imminent translocation of canavanine from the root to leaf, adventitious roots were induced from leaf explants in PC medium supplemented with 1 M kinetin and 20 M indole-3-acetic acid and subcultured in medium lacking growth regulators, and the roots excised from germinated seedlings were cultured in hormone-free PC medium. All the roots were incapable of accumulation of canavanine. These results suggest that leaves ofC. lineata are the possible site of canavanine synthesis.  相似文献   

13.
The effect of moderate (50 M) and high (200 M) doses of Cd were studied in relation to polyamine (Pas) metabolism, proline level and the glutamine synthetase/glutamate synthase system (GS/GOGAT) activity in nodules and roots of soybean plants during 6 days of treatment. The lower Cd concentration increased putrescine (Put) in both nodules and roots, while 200 M Cd increased Spm only in nodules and Put in roots. Spermidine (Spd) decreased in roots under both Cd concentrations. Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were both involved in Put biosynthesis in roots. In nodules, Put formation could mainly be attributed to ODC activity. Diamine oxidase (DAO) activity was severely reduced by 50 and 200 M Cd either in nodules or roots. The GS/GOGAT system activity was depressed either with 50 or 200 M Cd, but most significantly with the highest metal concentration. Under 200 M Cd, GS activity decayed to 25% or 60% of the control in nodules and roots, respectively, while GOGAT decreased 85% in nodules and 79% in roots by day 4 of treatment. Ammonium increased greatly in nodules (200% over the controls) and roots (100%) under 200 M Cd. Proline concentration increased significantly in nodules and roots under both Cd treatments, more markedly under 200 M Cd. The relationship between Pas and proline accumulation and nitrogen assimilation is discussed.  相似文献   

14.
C. Brunold  M. Suter 《Planta》1989,179(2):228-234
The localization of enzymes of assimilatory sulfate reduction was examined in roots of 5-d-old pea (Pisum sativum L.) seedlings. During an 8-h period, roots of intact plants incorporated more label from 35SO 4 2- in the nutrient solution into the amino-acid and protein fractions than shoots. Excised roots and roots of intact plants assimilated comparable amounts of radioactivity from 35SO 4 2- into the amino-acid and protein fractions during a 1-h period, demonstrating that roots of pea seedlings at this stage of development were not completely dependent on the shoots for reduced sulfur compounds. Indeed, these roots contained activities of ATP-sulfurylase (EC 2.7.7.4), adenosine 5-phosphosulfate sulfotransferase, sulfite reductase (EC 1.8.7.1) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8) at levels of 50, 30, 120 and 100%, respectively, of that in shoots. Most of the extractable activity of adenosine 5-phosphosulfate sulfotransferase was detected in the first centimeter of the root tip. Using sucrose density gradients for organelle separation from this part of the root showed that almost 40% of the activity of ATP-sulfurylase, adenosine 5-phosphosulfate sulfotransferase and sulfite reductase banded with the marker enzyme for proplastids, whereas only approximately 7% of O-acetyl-l-serine sulfhydrylase activity was detected in these fractions. Because their distributions on the gradients were very similar to that of nitrite reductase, a proplastid enzyme, it is concluded that ATP-sulfurylase, adenosine 5-phosphosulfate sulfotransferase and sulfite reductase are also exclusively or almost exclusively localized in the proplastids of pea roots. O-Acetyl-l-serine sulfhydrylase is predominantly present in the cytoplasm.Abbreviation APSSTase adenosine 5-phosphosulfate sulfotransferase  相似文献   

15.
Summary Addition of marl (CaCO3) and/or manure to an acid soil in pots caused lime-induced chlorosis inPinus radiata seedlings, especially after excessive irrigation for 15 days. Chlorotic symptoms and their intensity were found to be related more to soil moisture and to the HCO3 concentrations, than to percentage of free CaCO3, in the soil mixtures.Comparative chemical analysis showed lower total Fe and Mn concentrations and higher concentrations of cations and organic anions in the needles of seedlings with chlorotic symptoms than in the needles of healthy ones.  相似文献   

16.
The pea (Pisum sativum L.) mutant, E107 (brz, brz) accumulated extremely high concentrations of Fe in its older leaves when grown in light rooms in either defined nutrient media or potting mix, or outdoors in soil. Leaf symptoms (bronze color and necrosis) were correlated with very high Fe concentrations. When E107 plants were grown in nutrient solutions supplied 10 μm Fe, as the Fe(III)-N,N′-ethylenebis[2-(2-hydroxyphenyl)glycine] chelate, their roots released higher concentrations of Fe(III) reducing substances to the nutrient media than did roots of the normal parent cv, `Sparkle.' Reciprocal grafting experiments demonstrated that the high concentrations of Fe in the shoot was controlled by the genotype of the root. In short-term 59Fe uptake studies, 15-day-old E107 seedlings exhibited higher rates of Fe absorption than did `Sparkle' seedlings under Fe-adequate growth conditions. Iron deficiency induced accelerated short-term Fe absorption rates in both mutant and normal genotypes. Iron-treated E107 roots also released larger amounts of both protons and Fe(III) reductants into their nutrient media than did iron-treated `Sparkle' roots. Furthermore, the mutant translocated proportionately more Fe to its shoot than did the parent regardless of Fe status.  相似文献   

17.
Systems of wild and cultivated relatives are good experimental systems to test chemical defense theory because they provide closely related varieties that differ in discrete traits. To determine the relationship between resistance and chemical defense diversity among wild, landrace and cultivar accessions of Phaseolus vulgaris, we measured resistance to fungal infection in laboratory and field experiments, quantified phytoalexin diversity, and assessed the effectiveness of phytoalexin mixtures extracted from live tissue. Results show a gradient of resistance to fungal infections between wild, landrace and cultivar varieties. In the laboratory, wild seedlings were more resistant (93% non-infected) than landrace seedlings (80% non-infected) and modern cultivar seedlings (68% non-infected). Under field conditions wild seedlings were more resistant (97% non-infected) than cultivar seedlings (71% non-infected). Wild seedlings presented the highest phytoalexin diversity (H=1.11), while those of the landrace presented an intermediate level (H=0.97) and cultivar seedlings presented the lowest diversity (H=0.93). No differences were found in total concentrations. The in vitro inhibitory properties on hyphal growth of the isoflavonoid mixtures produced by individual seedlings showed a similar trend. Our results are consistent with similar gradients in other species of Phaseolus beans and resistance to Colletotrichum sublineolum in sorghum.  相似文献   

18.
Summary Dicotyledonous plants respond to Fe deficiency by enhancing the capacity of their roots to reduce Fe(III) to Fe(II). It has been suggested that there are two different ferric redox systems in the roots: the standard reductase, active with ferricyanide and not inducible by Fe deficiency, and the turbo reductase, active with both ferricyanide and ferric chelates and inducible by Fe deficiency. We have used different experimental approaches to test whether or not the Fe(III)-reducing capacity of cucumber (Cucumis sativus L. cv. Ashley) roots can be explained by considering the standard and the turbo reductase as the same enzyme. For this, we used both Fe-sufficient and Fe-deficient plants, which were treated with ethylene inhibitors (cobalt or silver thiosulfate; found to inhibit the turbo reductase in a previous work), a protein synthesis inhibitor (cycloheximide), or an mRNA polyadenylation inhibitor (cordycepin). At different times after application of these inhibitors, reduction of both ferricyanide and Fe(III)-EDTA were determined. In addition, we studied the effects of pH and temperature on the reduction of ferricyanide and Fe(III)-EDTA by both Fe-sufficient and Fe-deficient plants. Results suggest that there are, at least, two different ferric redox systems in the roots. Enhancement of Fe(III)-reducing capacity (turbo reductase) by Fe-deficient plants probably requires the de novo synthesis of a (or several) protein(s), which has a high turnover rate and whose expression is presumably regulated by ethylene.Abbreviations Ch-R ferric chelate reductase - CHM cycloheximide - CN-R ferricyanide reductase - EDDHA N,N-ethylene bis[2-(2-hydroxyphenyl)-glycine] - EDTA ethylenediamine-tetraacetic acid - Ferrozine 3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine - HEDTA N-hydroxyethylethylene-diaminetriacetic acid - STS silver thiosulfate  相似文献   

19.

Background and aims

Iron (Fe) deficiency chlorosis associated with high levels of soil bicarbonate is one of the main nutritional disorders observed in sensitive grapevine genotypes. The aim of the experiment was to assess both the independent and combined effects of Fe and bicarbonate nutrition in grapevine.

Methods

Plants of the Fe chlorosis tolerant 140 Ruggeri rootstock were grown with and without Fe(III)-EDTA and bicarbonate in the nutrient solution. SPAD index, plant growth, root enzyme (PEPC, MDH, CS, NADP+ ?IDH) activities, kinetic properties of root PEPC, organic acid concentrations in roots and xylem sap and xylem sap pH were determined. A factorial statistical design with two factors (Fe and BIC) and two levels of each factor was adopted: +Fe and ?Fe, and +BIC and ?BIC.

Results

This rootstock strongly reacted to Fe deficiency by activating several response mechanisms at different physiological levels. The presence of bicarbonate in the nutrient solution changed the activity of PEPC and TCA related enzymes (CS, NADP+-IDH) and the accumulation/translocation of organic acids in roots of Fe-deprived plants. Moreover, this genotype increased root biomass and root malic acid concentration in response to high bicarbonate levels in the substrate. Bicarbonate also enhanced leaf chlorophyll content.

Conclusions

Along with a clear independent effect on Fe nutrition, our data support a modulating role of bicarbonate on Fe deficiency response mechanisms at root level.  相似文献   

20.
The promoter region of the Agrobacterium tumefaciens T-cyt gene was fused to a -glucuronidase (gusA) reporter gene and introduced into tobacco plants. Detection of gusA expression in transgenic F1 progeny revealed that the T-cyt promoter is active in many, if not all, cell types in leaves, stems and roots of fully developed plants. Developmental stage-dependent promoter activity was observed in seedlings. Analysis of 5-deleted promoter fragments showed that sequences located between positions–185 and –139 with respect to the T-cyt translational start codon are essential for T-cyt promoter activity in transfected tobacco protoplasts as well as in transformed tobacco plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号