首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light and ultrastructural investigations on sub-adult and adult sexually mature females, demonstrates that in Torpedo marmorata folliculogenesis starts in the early embryo and that the two ovaries in the adult contain developing follicles of various sizes and morphology. Initially, the follicle is constituted by a small oocyte, surrounded by a single layer of squamous follicle cells. The organization is completed by a basal lamina and, more externally, by a theca, that at this stage is composed by a network of collagen fibers. As the oocyte growth goes on, during previtellogenesis and vitellogenesis, the organization of the basal lamina and of the oocyte nucleus does not change significantly. The basal lamina, in fact, remains acellular and constituted by fibrils intermingled in an amorphous matrix; the nucleus always shows an extended network of chromatin due to the lampbrush chromosomes, and one or two large nucleoli. By contrast, the granulosa (or follicular epithelium), the ooplasm, and the theca cells significantly change. The granulosa shows the most relevant modifications becoming multi-layered and polymorphic for the progressive appearance of intermediate and pyriform-like cells, located respectively next to the vitelline envelope, or spanning the whole granulosa. The appearance of intermediate cells follows that of intercellular bridges between small follicle cells and the oocyte so that one can postulate that, as in other vertebrates, small cells differentiate into intermediate, and then pyriform-like cells, once they have fused their plasma membrane with that of the oocyte. Regarding the ooplasm, one can observe as in previtellogenic follicles, it is characterized by the presence of intermediate vacuoles containing glycogen, while in vitellogenic follicles by an increasing number of yolk globules. The theca also undergoes significant changes: initially, it is constituted by a network of collagen fibers, but later, an outermost theca esterna containing cuboidal cells and an interna, with flattened cells, can be recognized. The role of the different constituents of the ovarian follicle in the oocyte growth is discussed.  相似文献   

2.
The present investigation demonstrates that in squamate reptiles, as already reported for Podarcis sicula (Andreuccetti et al., 2001), the differentiation of pyriform cells from small, stem follicle cells is characterized by the progressive appearance on the cell surface of glycoproteins bearing alpha-GalNAc terminated O-linked side chains. Using a lectin panel (WGA, GSI-A4, GSI-B4, PSA UEA-I, PNA, Con-A, DBA, LCA, BPA, SBA), we demonstrated that, during previtellogenesis, the pattern of distribution of DBA binding sites over the follicular epithelium dramatically changes. In fact, binding sites first appear in follicular epithelium at the time that small cells begin to differentiate; in such follicles, labeling is evident on the cell surfaces of small and intermediate cells. Later on, as the differentiation progresses, the binding sites also become evident on the cell surface of pyriform cells. Once differentiated, the pattern of the distribution of DBA binding sites over the follicular epithelium does not change. By contrast, during the phase of intermediate and pyriform cell regression, DBA binding sites gradually decrease, so that the monolayered follicular epithelium of vitellogenic follicles, constituted only by small cells, shows no binding sites for DBA. It is noteworthy that binding sites for DBA are present on small cells located in contact with the oocyte membrane, but not on those located under the basal lamina or among pyriform cells, and therefore not engaged in the differentiation into pyriform cells. This finding demonstrates that, in squamates, the pattern of distribution of alpha-N-GalNAc containing glycoproteins significantly changes during previtellogenesis, and that these modifications are probably related to the differentiation of small stem cells into highly specialized pyriforms.  相似文献   

3.
The architecture and transformation of the vitelline envelope of the developing oocyte into the chorion of the mature egg of Fundulus heteroclitus have been examined by scanning and transmission electron microscopy. The mature vitelline envelope is structurally complex and consists of about nine strata. The envelope is penetrated by pore canals that contain microvilli arising from the oocyte and macrovilli from follicle cells. During the envelope's transformation into the chorion, the pore canals are lost and the envelope becomes more fibrous and compact and its stratified nature less apparent. The micropyle, of pore, through which the sperm gains access to the enclosed egg is located at the bottom of a small funnel-shaped depression in the envelope. Internally, the micropyle opens on the apex of a cone-like elevation of the chorion. During the development of the envelope, structured chorionic fibrils, the components of which are presumed to be synthesized by the follicle cells, become attached to its surface. These chorionic fibrils are though to aid in the attachment of the egg to the substratum and perhaps to help prevent water loss during low tides when the egg may be exposed.  相似文献   

4.
In this work we carried out an ultrastructural analysis of the cell interface between oocyte and follicle cells during the oogenesis of the amphibian Ceratophrys cranwelli, which revealed a complex cell-cell interaction. In the early previtellogenic follicles, the plasma membrane of the follicle cells lies in close contact with the plasma membrane of the oocyte, with no interface between them. In the mid-previtellogenic follicles the follicle cells became more active and their cytoplasm has vesicles containing granular material. Their apical surface projects cytoplasmic processes (macrovilli) that contact the oocyte, forming gap junctions. The oocyte surface begins to develop microvilli. At the interface both processes delimit lacunae containing granular material. The oocyte surface has endocytic vesicles that incorporate this material, forming cortical vesicles that are peripherally arranged. In the late previtellogenic follicle the interface contains fibrillar material from which the vitelline envelope will originate. During the vitellogenic period, there is an increase in the number and length of the micro- and macrovilli, which become regularly arranged inside fibrillar tunnels. At this time the oocyte surface exhibits deep crypts where the macrovilli enter, thus increasing the follicle cell-oocyte junctions. In addition, the oocyte displays coated pits and vesicles evidencing an intense endocytic activity. At the interface of the fully grown oocyte the fibrillar network of the vitelline envelope can be seen. The compact zone contains a fibrillar electron-dense material that fills the spaces previously occupied by the now-retracted microvilli. The macrovilli are still in contact with the surface of the oocyte, forming gap junctions.  相似文献   

5.
Synthesis and selective accumulation of the major yolk proteins in the developing oocytes of the species Dacus oleae (Diptera: Tephritidae) was studied biochemically and by immunoelectron microscopy. In the hemolymph of adult females, two yolk proteins precursors (or vitellogenins) have been detected. They each exhibit a similar molecular weight and isoelectric point to their respective mature yolk proteins (or vitellins), while electrophoretic analysis of their synthetic profile shows that their levels in the hemolymph increase rapidly during development. Immunogold electron microscopy of ovarian sections, revealed that the hemolymph vitellogenins reach the oocyte through enlarged inter-follicular spaces and demonstrated vitellogenin synthesis by the follicle cells of the vitellogenic follicles. The newly synthesized vitellogenins follow a distinct secretory pathway into these cells as compared to other components being synthesized at the same time (e.g. the vitelline envelope proteins), since they were found in secretory vesicles that appeared to be differentiated from those destined to participate in the vitelline envelope. The vitellogenin-containing vesicles exocytose their contents directionally into the follicle cell/vitelline envelope boundary, and subsequently the vitellogenins diffuse among the gaps of the forming vitelline envelope and reach the oocyte plasma membrane. Their internalization by the oocyte includes the formation of an endocytic complex consisting of coated pits, coated vesicles, endosomes, transitional yolk bodies, and finally mature yolk bodies, in which the storage of the vitellins and other yolk proteins occur. These results are discussed in relation to data obtained from other Dipteran species.  相似文献   

6.
The relationship of the cells and tissues which comprise the developing ovarian follicle in Xenopus laevis has been studied with scanning and transmission electron microscopy. The saclike ovary is covered on its coelomic side by a squamous epithelium. The cells of this epithelium are extensively interdigitated, and each bears a short, centrally positioned cilium. The lumenal surface of the ovary is covered with a layer of nonciliated squamous cells. The areas of cell-cell contact are characterized by desmosomes in both epithelia, and between the epithelia lies a connective tissue layer-the theca-which contains collagen fibers, blood vessels, nerves, smooth muscle cells and oogonia. Beneath the theca in each follicle lies a single layer of flat stellate follicle cells. Associations between adjacent follicle cells are intermittent, leaving wide spaces or channels. Junctional contacts between neighboring follicle cells are characterized by desmosomes. From the basal surface of each follicle cell extend long, broad macrovilli which penetrate the underlying acellular vitelline envelope and contact the surface of the oocyte. Evidence is presented which suggests that follicle cells may produce and release components which participate in the formation of the vitelline envelope which consists of a 3-dimensional lattice of ropey fibers. Passageways through the vitelline envelope allow the maintenance of contact between oocyte and follicle cells and also allow ready penetration of materials both to the oocyte (e.g., vitellogenin) and from it (e.g., cortical granule material) at different stages of its development.  相似文献   

7.
A characterization of the Amphibian Bufo arenarum oocyte envelope is presented. It was made in different functional conditions of the oocyte: 1) when it has been released into the coelomic cavity during ovulation (surrounded by the coelomic envelope, (CE), 2) after it has passed through the oviduct and is deposed (surrounded by the viteline envelope, (VE), and 3) after oocyte activation (surrounded by the fertilization envelope, (FE). The characterization was made by SDS-PAGE followed by staining for protein and glycoproteins. Labeled lectins were used to identify glycosidic residues both in separated components on nitrocellulose membranes or in intact oocytes and embryos. Proteolytic properties of the content of the cortical granules were also analyzed. After SDS-PAGE of CE and VE, a different protein pattern was observed. This is probably due to the activity of a protease present in the pars recta of the oviduct. Comparison of the SDS-PAGE pattern of VE and FE showed a different mobility for one of the glycoproteins, gp75. VE and FE proved to have different sugar residues in their oligosaccharide chains. Mannose residues are only present in gp120 of the three envelopes. N-acetyl-galactosamine residues are present in all of the components, except for gp69 in the FE. Galactose residues are present mainly in gp120 of FE. Lectin-binding assays indicate the presence of glucosamine, galactose and N-acetyl galactosamine residues and the absence (or non-availability) of N-acetyl-glucosamine or fucose residues on the envelopes surface. The cortical granule product (CGP) shows proteolytic activity on gp75 of the VE.  相似文献   

8.
黄胫小车蝗卵子发生及卵母细胞凋亡的显微观察   总被引:5,自引:0,他引:5  
对黄胫小车蝗(Oedaleus infernalis)卵子发生过程和卵母细胞凋亡进行显微观察。结果表明,黄胫小车蝗卵子发生可明显分为3个时期10个阶段,即卵黄发生前期、卵黄发生期和卵壳形成期。第1阶段,卵母细胞位于卵原区,经历减数第一次分裂;第2阶段,卵母细胞核内染色体解体成网状,滤泡细胞稀疏地排列在卵母细胞周围;第3阶段,滤泡细胞扁平状,在卵母细胞周围排成一层;第4阶段,滤泡细胞呈立方形排在卵母细胞周围;第5阶段,滤泡细胞呈长柱形排在卵母细胞周围,滤泡细胞之间、滤泡细胞与卵母细胞之间出现空隙;第6阶段,卵母细胞边缘开始出现卵黄颗粒;第7阶段,卵母细胞中沉积大量卵黄,胚泡破裂;第8阶段,滤泡细胞分泌卵黄膜包围卵黄物质;第9阶段,滤泡细胞分泌卵壳;第10阶段,卵壳分泌结束,卵子发育成熟。卵母细胞发育过程中的凋亡发生在卵黄发生前期,主要表现为滤泡细胞向卵母细胞内折叠,胞质呈团块状等特征。  相似文献   

9.
10.
Summary The follicular epithelial layers of the developing ovary of two cichlid species were examined by electron microscopy for evidence of steroid secretion. As each oocyte grew, its follicular cell layers increased in height, eventually becoming somewhat columnar; no development could be detected in follicle cells of non-activated oocytes. Isolated cells close to capillaries in the thecal layer developed large amounts of smooth membrane indicative of steroidogenesis, appearing similar at maturity to testicular Leydig cells. In Cichlasoma nigrofasciatum the mitochondria of differentiated thecal elements contained microtubule-like inclusions. It is suggested that these cells may produce estrogens during vitellogenesis.In developing granulosa cells, active synthesis of granular endoplasmic reticulum occurred. This membrane appeared to arise from the nuclear envelope, and in the pre-ovulatory stage was always intermediate between smooth and granular forms, being only partly associated with ribosomes. Evidence for steroid biosynthesis in the granulosa at this time was therefore equivocal. Evidence was found of transfer of micropinocytotic vesicles from the granulosa cells into the ooplasm.The fate of the post-ovulatory follicle was investigated in Cichlasoma. Thecal elements remained separate from granulosa and unchanged in ultrastructure for up to ten days. The granulosa cells proliferated and differentiated within a few hours after ovulation into a cell type containing much smooth reticulum, characteristic of steroidogenesis. However, after approximately three days numerous signs of degenerative processes became visible. The significance of the observed ultrastructural changes in relation to endocrine function is discussed.  相似文献   

11.
We describe the ultrastructural organization of the vitellogenic follicle stages in two caecilian species. Monthly samples of slices of ovary of Ichthyophis tricolor and Gegeneophis ramaswamii from the Western Ghats of India were subjected to transmission electron-microscopic analysis, with special attention to the follicle cell/oocyte interface. In order to maintain uniformity of the stages among the amphibians, all the stages in the caecilian follicles were assigned to stages I–VI, the vitellogenic and post-vitellogenic follicles being assigned to stages III–VI. Stage III commences with the appearance of precursors of vitelline envelope material in the perivitelline space. Stages IV and V have been assigned appropriate substages. During the transition of stage III to stage VI oocytes, a sequential change occurs in the manifestations of follicle cells, perivitelline space, vitelline envelope and oocyte cortex. The vitelline envelope becomes a tough coat through the tunnels of which the macrovilli pass to interdigitate between the microvilli. The oocyte surface forms pinocytic vesicles that develop into coated pits and, later, coated vesicles. Contributions of the oocyte cortex to the vitelline envelope and of the follicle cells to yolk material via synthesis within them are indicated. The follicle cell/oocyte interface of vitellogenic follicles of these two caecilians resembles that in anurans and urodeles, with certain features being unique to caecilians. Thus, this paper throws light on the possible relationships of caecilians to anurans and urodeles with special reference to ovarian follicles. This research was supported by funds from the Kerala State Council for Science, Technology and Environment (KSCSTE), through the SARD facility, and by the FIST scheme of Department of Science and Technology, Government of India, New Delhi, to the Department of Zoology, University of Kerala, Thiruvananthapuram, and to the Department of Animal Science, Bharathidasan University, Thiruchirapalli (SR/FST/LSI-233/2002).  相似文献   

12.
Denuded oocytes freed of their vitelline envelope have been prepared by two methods, enzymatically with pronase and manually by microdissection. The response of denuded oocytes to progesterone, in terms of germinal vesicle breakdown (GVBD), was similar to that obtained with defolliculated oocytes (separated with collagenase from follicle cells, but still keeping their vitelline membrane). The same conclusion was drawn with respect to morphological features of the oocyte surface observed by transmission and scanning electron microscopy, before and after progesterone-induced GVBD. The synergistic effect of insulin and progesterone in denuded oocytes was comparable to that observed in defolliculated oocytes. Multiplication stimulating activity (MSA) had the same effect as insulin. These observations indicate that hormones act directly upon oocytes, without interference of the surrounding vitelline envelope and follicle cells.  相似文献   

13.
ABSTRACT. The oocytes of 3-day-old unfed Aedes aegypti mosquitoes are in a state of oogenic arrest, but microgram doses of ecdysterone stimulate their accumulation of a variable amount of yolk. We now find that these doses also induce the deposition of plaques of vitelline envelope by the follicle cells, and with transmission electron microscopy we have compared their formation with that in normal blood-fed females. Plaques in the experimental animals were abnormally large and irregular in shape and distribution. In part, these abnormalities were attributable to the fact that the follicle cells remain in close contact with the oocyte, whereas the space between follicle cells and oocyte increase significantly in the blood-fed female. Deposition of the plaques occurred earliest after the injection of 5 μg ecdysterone, but even at this high dose the amount of plaque material deposited was less than in the blood-fed controls. Induction of the deposition of abnormal vitelline envelope in unfed females was most clearly demonstrated after two injections, 1 μg ecdysterone each, 14h apart; 24h after the second injection, the plaques had prematurely fused into a thin disorganized envelope. When females were injected with ecdysterone immediately after a blood-meal, vitelline envelope plaques formed prematurely, and their structure became increasingly abnormal with time. This early onset of activity was characteristic of follicle cells adjacent both to the oocyte and to nurse cells. Thus, the factors that normally control the formation and organization of the vitelline envelope are absent in the unfed female stimulated with high doses of ecdysterone, while in the blood-fed females, excessive ecdysterone apparently interferes with the timing and orderly sequence of envelope formation.  相似文献   

14.
This paper deals with an electron microscope study of nucleolar ultrastructural modifications that occur in the oocytes of the lizard Podarcis sicula during ovarian follicle differentiation. In small diplotene oocytes around which a monolayered follicular epithelium forms, the nucleolus appears as a fibrillo-granular structure. Afterwards, simultaneously with the beginning of pyriform cell differentiation inside the granulosa, the nucleolus progressively condenses and breaks into fragments, forming dense spherical bodies. In larger follicles, with well differentiated pyriform cells, a typical nucleolus is no longer detectable in the oocyte nucleus. These ultrastructural modifications suggest a possible impairment of the oocyte nucleolus in ribosome organization. A possible involvement of pyriform cells in supplying ribosomes to the growing oocyte is discussed.  相似文献   

15.
E Heller  M A Raftery 《Biochemistry》1976,15(6):1199-1203
The egg vitelline envelope of the marine invertebrate, Megathura crenulata, was lyzed either by sperm lysins A, B, C or by dithiothreitol. In each case the lysis mixture consisted of two major fractions, I and II, that could be separated by hydroxylapatite chromatography and had different electrophoretic mobilities on cellulose acetate strips. The amino acid, amino sugar, and neutral sugar compositions of fractions I and II were similar and resembled that of the intact vitelline envelope. Fractions I and II of each lysis mixture emerged in the exclusion volume of a Sepharose 6B column. A vitelline envelope fragment enzymatically formed by lysin was further degraded by dithiothreitol to form smaller fragments. A model of the vitelline envelope of the Megathura crenulata egg is suggested whereby the envelope is composed of polypeptide chains cross-linked by disulfide bonds and built to a large extent of closely spaced threonine residues. Most of the threonine residues are linked to carbohydrate units. Dithiothreitol dissolves the envelope by reducing disulfide bonds, whereas lysins most likely dissolve the envelope by degrading polypeptide chains.  相似文献   

16.
We studied the ultrastructural organization of the ovarian follicles in a placentotrophic Andean lizard of the genus Mabuya. The oocyte of the primary follicle is surrounded by a single layer of follicle cells. During the previtellogenic stages, these cells become stratified and differentiated in three cell types: small, intermediate, and large globoid, non pyriform cells. Fluid‐filled spaces arise among follicular cells in late previtellogenic follicles and provide evidence of cell lysis. In vitellogenic follicles, the follicular cells constitute a monolayered granulosa with large lacunar spaces; the content of their cytoplasm is released to the perivitelline space where the zona pellucida is formed. The oolemma of younger oocytes presents incipient short projections; as the oocyte grows, these projections become organized in a microvillar surface. During vitellogenesis, cannaliculi develop from the base of the microvilli and internalize materials by endocytosis. In the juxtanuclear ooplasm of early previtellogenic follicles, the Balbiani's vitelline body is found as an aggregate of organelles and lipid droplets; this complex of organelles disperses in the ooplasm during oocyte growth. In late previtellogenesis, membranous organelles are especially abundant in the peripheral ooplasm, whereas abundant vesicles and granular material occur in the medullar ooplasm. The ooplasm of vitellogenic follicles shows a peripheral band constituted by abundant membranous organelles and numerous vesicular bodies, some of them with a small lipoprotein core. No organized yolk platelets, like in lecithotrophic reptiles, were observed. Toward the medullary ooplasm, electron‐lucent vesicles become larger in size containing remains of cytoplasmic material in dissolution. The results of this study demonstrate structural similarities between the follicles of this species and other Squamata; however, the ooplasm of the mature oocyte of Mabuya is morphologically similar to the ooplasm of mature oocytes of marsupials, suggesting an interesting evolutionary convergence related to the evolution of placentotrophy and of microlecithal eggs. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
E Heller  M A Raftery 《Biochemistry》1976,15(6):1194-1198
The egg vitelline envelope of the marine invertebrate Megathura crenulata is a glycoprotein composed of 37.3 mol % protein and 62.7 mol % carbohydrate. Of the total amino acid content, 61 mol % consists of a single amino acid, threonine. The carbohydrate content includes galactosamine, galactose, and fucose. The molar ratio of threonine to galactosamine is about 1:1. Most of the threonine residues are linked to galactosamine residues via O-glycosidic bonds. A single peptide that was purified following alkaline borohydride treatment of the vitelline envelope had the structure: Abu-Pro-Abu-(Abu6, Pro1, Thr1), where Abu is 2-aminobutyric acid. Several sugar residues have been isolated following the alkaline hydrolysis of the vitelline envelope that include an octasaccharide Gal4Fu4, an hexasaccharide Gal3Fu3, a trisaccharide Gal3, fucose, and galactose. It is proposed that the vitelline envelope of Megathura crenulata eggs is composed of polypeptide chains built to a large extent of closely spaced threonine residues. Almost every threonine residue is linked to a saccharide moiety.  相似文献   

18.
In Molgula pacifica small previtellogenic oocytes are found between cells of the ovarian epithelium. Each oocyte subsequently grows within a compartment of the epithelium known as a primary follicle. The wall of the primary follicle is composed of outer follicular epithelial cells. While growing from about 15–70 μm in diameter, each oocyte gradually recruits a set of about 950 non-epithelial inner follicular cells. These cells co-differentiate in sets with each oocyte, but test cells never appear. The first filamentous components of the vitelline coat appear on the surface of an oocyte in places where it is in contact with undifferentiated (stage 2) inner follicular cells. Each fully differentiated inner follicular cell stores adhesive precursors in a large compartment of the endoplasmic reticulum and probably secretes components of the vitelline coat. There is no evidence that the outer follicular epithelial cells transform into inner follicular cells by dedifferentiation as has often been assumed. Inner follicular cells, in stage 1, are nearly identical to hemoblasts. Hemoblasts may form the inner follicular cells, but to do this they would have to cross the outer follicular epithelium and this phenomenon has not yet been seen.  相似文献   

19.
Piscicola has a pair of elongated sac-shaped ovaries. Inside the ovaries are numerous small somatic cells and regularly spherical egg follicles. Each follicle is composed of three types of cells: many (average 30) germ cells (cystocytes) interconnected by intercellular bridges in clones (cysts), one intermediate cell, and three to five outer follicle cells (envelope cells). Each germ cell in a clone has one intercellular bridge connecting it to the central anucleate cytoplasmic mass, the cytophore. Each cluster of germ cells is completely embedded inside a single huge somatic follicle cell, the intermediate (interstitial) cell. The most spectacular feature of the intermediate cell is its development of a system of intracytoplasmic canals apparently formed of invaginations of its cell membrane. Initially the complex of germ cell cluster + intermediate cell is enclosed within an envelope composed of squamous cells. As oogenesis progresses the envelope cells gradually degenerate. All the germ cells that have terminated their mitotic divisions are of similar size and enter meiotic prophase, but one of the cystocytes promptly starts to grow faster and differentiates into the oocyte, whereas the remaining cystocytes withdraw from meiosis and become nurse cells (trophocytes). Numerous mitochondria, ER, and a vast amount of ribosomes are transferred from the trophocytes via the cytophore toward the oocyte. Eventually the oocyte ingests all the content of the cytophore, and the trophocytes degenerate. Little vitellogenesis takes place; the oocyte gathers nutrients in the form of small lipid droplets. At the end of oogenesis, an electron-dense fibrous vitelline envelope appears around the oocyte, among short microvilli. At the same time, electron-dense cortical granules occur in the oocyte cortical cytoplasm; at the end of oogenesis they are numerous, but after fertilization they disappear from the ooplasm. In the present article we point out many differences in the course of oogenesis in two related families of rhynchobdellids: piscicolids and glossiphoniids.  相似文献   

20.
北京油葫芦卵黄物质形成的超微结构观察   总被引:5,自引:1,他引:4  
奚耕思  郎冬梅 《昆虫知识》2003,40(6):538-541
以蟋蟀科的北京油葫芦Teleogryllusmitratrus(Burmeister)为材料 ,对其卵子发生的卵黄物质形成过程的超微结构进行了观察。根据电镜观察结果分析 ,北京油葫芦卵黄构成有卵母细胞内部物质与外部物质参与。卵黄发生初期 ,主要以卵母细胞自身合成为主 ,随着卵母细胞发育的进行 ,有外源物质介入卵黄合成之中。它包括两部分物质来源 :一部分是由血淋巴通过滤泡细胞间隙向卵母细胞提供合成卵黄物质 ;另一部分则由滤泡细胞通过指状微绒毛以多泡小体和多片小体的形式向卵母细胞提供合成卵黄的物质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号