首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult fitness components may strongly depend on variation in locomotory performance such as flight; this variation can be sex specific. Fast take-off to intercept females and competing males is an essential behavioral component of the territorial perching behavior in male speckled wood butterflies (Pararge aegeria L.). Females on the other hand avoid frequent take-offs particularly under suboptimal temperatures, typically showing fewer but longer flights than males. We estimated the heritability of take-off acceleration performance under suboptimal body temperatures by a restricted maximum-likelihood model. We calculated genetic correlations between this performance and a selection of morphological traits: size (body mass), flight muscle investment (relative thorax mass), and wing shape (forewing aspect ratio). Our results show significant additive genetic variation for mean acceleration performance and a similar but nonsignificant trend (P= 0.08) for maximal acceleration performance during take-off in males (h(2)= 0.15). In females, heritability was not significantly different from zero for either of the acceleration performance measures. Morphological traits and take-off performance were genetically linked in a sex-specific way. In males, relative thorax mass and forewing aspect ratio were positively genetically correlated with acceleration performance. In females, there was a negative genetic correlation between acceleration performance and abdomen mass, but not with residual abdomen mass (i.e., regressed on total body mass). To fully understand the evolution of sexual differences in flight performances and morphology, several other flight performances will have to be included. This multifunctional nature of flight and its consequences for the evolutionary study of flight has not yet been fully appreciated in the literature.  相似文献   

2.
In order to determine whether proline can be utilized as fuel during flight of Aedes aegypti, proline, alanine, and glutamine concentrations were monitored at 0, 30 and 60 min after flight using sugar-fed males and females, and blood meal-fed females. In sugar-fed and blood meal-fed females, flight lead to a significant decrease in proline and a significant increase in glutamine concentration in both hemolymph and thorax. Only during flight after a blood meal was a significant increase in the alanine concentration observed in hemolymph. After flight, the proline alanine and glutamine levels in the hemolymph and thorax from males did not change significantly. In addition, activities of enzymes related to amino acid metabolism were assayed in homogenates of cephalothorax and thorax from both sexes, and in fat body and midgut from females. In both sexes, the activities of all the enzymes studied were significantly higher in thorax than in cephalothorax. The levels of the enzymes involved in proline oxidation were higher in thorax than in fat body and midgut. These results suggest that proline can be used as an energy substrate for flight muscle of Ae. aegypti females. However, the elevation in glutamine levels observed in hemolymph and thorax after flight has not been reported in other insects that fuel flight using proline and may suggest an additional mechanism for shuttling ammonia between flight muscle and fat body is present in mosquitoes.  相似文献   

3.
Berwaerts K  Van Dyck H 《Oecologia》2004,141(3):536-545
Realized fitness in a fluctuating environment depends on the capacity of an ectothermic organism to function at different temperatures. Flying heliotherms like butterflies use flight for almost all activities like mate location, foraging and host plant searching and oviposition. Several studies tested the importance of ambient temperature, thermoregulation and butterfly activity. Here, we test the influence of variation in flight morphology in interaction with differences in body temperature on locomotor performance, which has not been thoroughly examined so far. Take-off free flight performance was tested at two different body temperatures in males and females of the speckled wood butterfly Pararge aegeria. We found that both males and females accelerated faster at the optimal body temperature compared to the suboptimal one. The multivariate analyses showed significant sex-specific contributions of flight morphology, body temperature treatment and feeding load to explain variation in acceleration performance. Female and male butterflies with a large relative thorax (i.e. flight muscle investment) mass and large, slender wings (i.e. aspect ratio) accelerated fast at optimal temperature. However, high aspect ratio individuals accelerated slowly at suboptimal temperature. Females of low body mass accelerated fast at optimal, but slowly at suboptimal body temperature. In males, there was an interaction effect between body and relative thorax mass: light males with high relative thorax mass had higher performance than males with a low relative thorax mass. In addition, relative distance to the centre of forewing area was positively related to acceleration at both temperatures in males. Males and females with higher feeding loads had lower levels of acceleration. Finally, males that were able to accelerate fast under both temperatures, had a highly significantly heavier relative thorax, lower body and abdomen mass. More generally, this study shows that the significance of butterfly flight morphology in terms of flight performance is at least partially dependent on body temperature.  相似文献   

4.
Impaired flight ability during incubation in the pied flycatcher   总被引:3,自引:0,他引:3  
During the breeding season, many female passerine birds increase in body mass before egg laying, maintain a relatively high body mass during incubation, and then drop back to the original level during the chick-rearing period. The post-hatching reduction in body mass, which can be as large as 10–20%, has been suggested to represent an adaptive mass loss to reduce wing loading, thereby increasing parental flight efficiency when chicks have hatched and have to be fed. Here we present the first study of changes in flight ability from incubation to chick rearing in birds. Wild female pied flycatchers Ficedula hypoleuca flew more slowly during incubation than during chick rearing; a 7% reduction in body mass after the chicks had hatched was associated with a 10% increase in vertical take-off speed. Furthermore, the flight muscle size of the females tracked the reduction in wing load, suggesting that muscle size was adaptively reduced when no longer needed. Since incubation-feeding by males reduces the time females have to spend outside the nest foraging, our results suggest that in addition to increasing female nutritional status and reducing incubation time, incubation-feeding will also reduce predation risk during the period when females face impaired flight ability.  相似文献   

5.
Many evolutionary ecological studies have documented sexual dimorphism in morphology or behaviour. However, to what extent a sex-specific morphology is used differently to realize a certain level of behavioural performance is only rarely tested. We experimentally quantified flight performance and wing kinematics (wing beat frequency and wing stroke amplitude) and flight morphology (thorax mass, body mass, forewing aspect ratio, and distance to centre of forewing area) in the butterfly Pararge aegeria (L.) using a tethered tarsal reflex induced flight set-up under laboratory conditions. On average, females showed higher flight performance than males, but frequency and amplitude did not differ. In both sexes, higher flight performance was partly determined by wing beat frequency but not by wing stroke amplitude. Dry body mass, thorax mass, and distance to centre of forewing area were negatively related to wing beat frequency. The relationship between aspect ratio and wing stroke amplitude was sex-specific: females with narrower wings produced higher amplitude whereas males show the opposite pattern. The results are discussed in relation to sexual differences in flight behaviour.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 675–687.  相似文献   

6.
In nectar-feeding butterflies, reproductive potential is usually thought to depend on the size of the reproductive reserves in the abdomen, the adult food quality and, for females, the amount of resources received in the spermatophores at mating. Recent findings show that thorax mass and nitrogen content decrease with age in some butterfly species, and that thorax resources may be used for reproduction in the butterfly Pieris napi , just as in some other insects. In order to determine whether this is a general pattern and ascertain how it relates to the investment of resources in reproduction we studied the dynamics of thorax and abdomen mass changes in 11 Swedish butterfly species. By regressing thorax and abdomen mass on age of field-collected specimens, we show that loss of mass from both the thorax and the abdomen is a common phenomenon among nectar-feeding temperate zone butterflies under natural conditions. We argue that our results indicate that resources from flight muscles can be reallocated to reproduction by these butterflies, thus increasing their reproductive potential. Within species, females use proportionately more resources from the thorax than do males, as expected from the difference in investment of resources in reproduction. Among males we expect species with a higher reproductive investment to have a larger decrease in thorax and abdomen mass, and our data indicate that this is the case. Looking at the change in relative thorax mass, our results suggest that the use of resources from the thorax does not affect flight performance negatively, something that could constrain the use of muscle resources.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 363–380.  相似文献   

7.
Large body size, small wings and relatively low flight muscle mass are general attributes of flightlessness in birds, but a general analysis is lacking when considering these factors simultaneously. Common Eiders Somateria mollissima are large sea ducks characterized by short, pointed wings of low surface area. Because females fast throughout incubation, they need to accumulate large body reserves prior to laying. During this pre‐laying period, many females cannot take off, and dive when approached under still‐air conditions, whereas males take off readily when disturbed. In this paper, we examine how pre‐laying female Common Eiders fit the maximum wing‐loading ratio of Meunier, the marginal flight muscle ratio (FMR) of Marden and predictions of a general model of take‐off performance (also by Marden). Wing morphology was recorded and flight muscles were dissected from specimens collected during the pre‐laying period near one breeding colony. In addition, take‐off ability, as observed during collection, was compared with the proposed thresholds for flightlessness and outputs from the general model of take‐off performance. The results indicated that half of the pre‐laying females exceeded the wing‐loading ratio of Meunier, although all females had values above 0.160, the flight muscle ratio below which take‐off would be impossible. We suggest that wing‐loading and flight muscle ratio interact in Eiders, with higher FMR compensating for excessive wing‐loading. Nevertheless, the model of take‐off performance predicted, with reasonable accuracy, the behavioural observations under still‐air conditions. Indeed, females that were predicted to be temporarily flightless could produce a specific lift of 8.8 N/kg on average (less than the 9.8 N/kg required to overcome gravity). In contrast, the average specific lift predicted for males capable of flight was estimated to be 11.4 N/kg. These results agree with our observations that female Common Eiders are at the limit of flight capability in vertebrates.  相似文献   

8.
Impaired flight ability--a cost of reproduction in female blue tits   总被引:3,自引:0,他引:3  
When prey are attacked by predators, escape ability has an obvious influence on the probability of survival. Laboratory studieshave suggested that flight performance of female birds mightbe affected by egg production. This is the first study of changesin take-off ability, and thus potentially in predation risk,during reproduction in wild birds. We trapped individual maleand female blue tits repeatedly during the breeding season.Females were 14% heavier and flew 20% slower (probably as aconsequence of a lower ratio of flight muscle to body mass)during the egg-laying period than after the eggs had hatched.However, flight muscle size did not change to compensate for changes in body mass over this period. In contrast, males showedno changes in either body mass, muscle size, or flight abilityover the same period. Furthermore, the impairment of flightin females increased with the proportion of the clutch thathad been laid, an effect that was independent of body mass and muscle size. This indicates that egg production causes additional physiological changes in the female body that produce impairedlocomotor performance. We suggest that courtship feeding offemale blue tits by their mates might reduce predation riskduring the period when female take-off ability is impairedby reducing the time females have to spend foraging and thusreducing the time they are exposed to increased predation.  相似文献   

9.
Insect flight is a highly energy demanding type of locomotion. In butterflies, males may locate females by different behavioural tactics. The tactics correspond to different flight types that, in turn, are assumed to reflect different energetic costs. Costs need to be considered to fully understand the pay‐offs of co‐existing alternative tactics relative to the environmental context and the phenotypes of the individuals. We addressed the issue in the speckled wood Pararge aegeria, in which males either adopt a territorial wait‐and‐fight tactic (i.e. territorial perching) in a sunlit patch on the forest floor, or a fly‐and‐search tactic to locate females in a wider area of the forest (i.e. patrolling). Perching corresponds to high frequency of take‐off flights and aerial combats with high levels of manoeuvrability and is assumed to be energetically more costly than longer, continuous flights at lower speed in patrollers. We tested the effect of different flight activity levels and of the behavioural tactics on lipid reserves and lipid use in males by laboratory and outdoor cage experiments. Low‐activity males that had access to honey water were capable of synthesizing lipids; their lipid reserves increased with age. The effect disappeared in males that actively flew in the outdoor cages. Lipid reserves decreased significantly faster in territorial perching males compared to non‐perching males, but resting metabolic rate did not differ between the alternative behavioural tactics. Territorial perching males had larger flight muscle ratio (i.e. thorax/body mass) than non‐perching males. We discuss the evidence of the physiological costs of perching relative to the co‐existence of perching and patrolling tactics.  相似文献   

10.
Plutella xylostella in the temperate zone shows a clear seasonal change in adult body size. In the laboratory, large and small moths were produced during immature stages at 15°C and 25°C, respectively. These moths were then used to evaluate longevity, age-specific flight ability, flight ability of mated and unmated females, and the influence of flight experience on the subsequent reproductive success. The large moths lived longer and displayed a greater flight ability over 3 weeks. Irrespective of body size, unmated females flew for a longer time than mated females, and flight experience affected their subsequent reproductive success. Females of both sizes mated and laid eggs soon after emergence, without any obvious pre-reproductive period. More flight experience did not delay oviposition, but did reduce egg production. It is likely that large moths with a longer adult life span and greater flight ability are better fitted for long-distance flight and more fecund than small ones. These experimental results may explain why long-distance migration ofP. xylostella is mostly seen during cool seasons, when relatively large moths with long forewing appear in the field.  相似文献   

11.
Individuals colonizing unoccupied habitats typically possess characters associated with increased dispersal and, in insects, colonization success has been related to flight morphology. The speckled wood butterfly, Pararge aegeria, has undergone recent major expansions in its distribution: in the north of its range, P. aegeria has colonized many areas in north and east England, and in the south, it was first recorded on Madeira in 1976. We examined morphological traits associated with flight and reproduction in the northern subspecies tircis, and in the southern subspecies aegeria, from sites colonized about 20 years ago in northern England and on Madeira, respectively. Investment in flight was measured as relative wing area and thorax mass, and investment in reproduction as relative abdomen mass. All measurements were from individuals reared in a common environment and there were significant family effects in most of the variables measured. Compared with individuals from sites continuously occupied in recent history, colonizing individuals were larger (adult live mass). In the subspecies tircis, colonizing individuals also had relatively larger thoraxes and lower wing aspect ratios indicating that evolutionary changes in flight morphology may be related to colonization. However, sex by site interactions in analyses of thorax mass and abdomen mass suggest different selection pressures on flight morphology between the sexes in relation to colonization. Overall, the subspecies aegeria was smaller (adult live mass) and had a relatively larger thorax and wings, and smaller abdomen than subspecies tircis. Evolutionary changes in flight morphology and dispersal rate may be important determinants of range expansion, and may affect responses to future climate change. Received: 1 March 1999 / Accepted: 30 June 1999  相似文献   

12.
ABSTRACT. Regular flight exercise of adult male Locusta migratoria migratorioides (R and F) accelerated the development of maximum flight speed and disrupted the development of the typical pattern of change of flight speed exhibited when normal (untrained) adult male laboratory locusts are flown on roundabouts. Thus, while untrained mature locusts fly fast initially and then slow to a steady cruising speed after 20 min, trained locusts flew at a relatively constant speed throughout a 60-min test period. Flight training also led to a marked reduction in the size of the fat body and the flight muscles, but flight muscle ultrastructural development was not affected. Regular flight exercise had no long-term effect on haemolymph carbohydrate concentration but lipid levels were significantly depressed.  相似文献   

13.
Summary We test whether palatability of Neotropical butterflies is associated with distribution of mass to the thorax and abdomen. Thoracic mass is predominantly muscle mass, whereas abdominal mass includes organs of digestion, food storage, and reproduction. To escape from predation, butterflies palatable to the rufous-tailed jacamar (Galbula ruficauda) use fast, erratic flight, whereas unpalatable butterflies have defensive chemicals and slow, regular flight patterns. We adjusted for effects of phylogeny and report partial correlations for two levels of analysis: 1) comparisons among-lineage means, which test for correlations between traits of distantly related lineages, and 2) comparisons among deviations from lineage means (or within lineages), which test for correlations between traits of more closely related species.Among lineages for both males (n=10 lineages) and females (n=9), palatability and thoracic mass were positively correlated, whereas palatability and abdominal mass were negatively correlated. An inverse correlation between thoracic and abdominal mass is a consequence of the two segments composing 75% of the total body mass. Predation, indexed by palatability, may select for increased flight speed and thoracic mass at the expense of the abdomen, but relative flight speed and thoracic mass were not significantly correlated.Within lineages (n=45 species for each sex), thoracic mass was uncorrelated with palatability in both sexes. Relative flight speed correlated positively with thoracic mass and negatively with body mass. Palatability and abdominal mass were negatively correlated for males but not females. Hence differences between the sexes in mass distribution suggest differences in reproductive constraints and predation stress.  相似文献   

14.
Summary As a comparison to the many studies of larger flying insects, we carried out an initial study of heat balance and thermal dependence of flight of a small butterfly (Colias) in a wind tunnel and in the wild.Unlike many larger, or facultatively endothermic insects, Colias do not regulate heat loss by altering hemolymph circulation between thorax and abdomen as a function of body temperature. During flight, thermal excess of the abdomen above ambient temperature is weakly but consistently coupled to that of the thorax. Total heat loss is best expressed as the sum of heat loss from the head and thorex combined plus heat loss from the abdomen because the whole body is not isothermal. Convective cooling is a simple linear function of the square root of air speed from 0.2 to 2.0 m/s in the wind tunnel. Solar heat flux is the main source of heat gain in flight, just as it is the exclusive source for warmup at rest. The balance of heat gain from sunlight versus heat loss from convection and radiation does not appear to change by more than a few percent between the wings-closed basking posture and the variable opening of wings in flight, although several aspects require further study. Heat generation by action of the flight muscles is small (on the order of 100 m W/g tissue) compared to values reported for other strongly flying insects. Colias appears to have only very limited capacity to modulate flight performance. Wing beat frequency varies from 12–19 Hz depending on body mass, air speed, and thoracic temperature. At suboptimal flight temperatures, wing beat frequency increases significantly with thoracic temperature and body mass but is independent of air speed. Within the reported thermal optimum of 35–39°C, wing beat frequency is negatively dependent on air speed at values above 1.5 m/s, but independent of mass and body temperature. Flight preference of butterflies in the wind tunnel is for air speeds of 0.5–1.5 m/s, and no flight occurs at or above 2.5 m/s. Voluntary flight initiation in the wild occurs only at air speeds 1.4 m/s.In the field, Colias fly just above the vegetation at body temperatures of 1–2°C greater than when basking at the top of the vegetation. These measurements are consistent with our findings on low heat gain from muscular activity during flight. Basking temperatures of butterflies sheltered from the wind within the vegetation were 1–2°C greater than flight temperatures at vegetation height.  相似文献   

15.
ABSTRACT.
  • 1 Horvathiolus gibbicollis (Costa), a ground-living seed-feeding bug of the mediterranean region, has two wing morphs. In macrop-terous bugs both pairs of wings are fully developed. In brachypterous ones forewings are reduced to about two-thirds and hindwings to less than a third of their length in macropters.
  • 2 Each morph bred true with regard to wing length when reared under variable density, food and temperature conditions for several generations.
  • 3 All F1 offspring between crosses of the two morphs were brachypterous. In F2 approximately 25% were macropters and 75% brachypters implying monogenic control of wingform.
  • 4 Flight muscles in macropters vary from fully developed to totally reduced. This variation is determined by environmental conditions during adult life. Most young adult bugs have flight muscles, and totally starved or unmated bugs retain their flight muscles. Fed and mated females histolyse flight muscles as they start laying eggs, while most males of the same group retain their muscles.
  • 5 Brachypterous bugs have a smaller thorax and larger abdomen than macropterous ones.
  • 6 Brachypterous bugs reach adulthood slightly before macropterous ones, and they have a distinctly shorter adult preoviposition period.
  • 7 Lifetime egg production does not differ significantly between the two wing morphs. However, the temporal pattern of egg laying is different in the two morphs. The mx-curve of macropters starts later, then attains a higher peak and finally decreases faster than that of brachypters.
  • 8 Initially, macropters lay smaller eggs than brachypters, but egg volume increases with age in macropters and eventually approaches that of brachypters.
  • 9 The initial increase in reproductive effort (egg volumexegg number) of macropters is concomitant with wing muscle histolysis and the mobilization of thorax space for reproduction.
  • 10 Adult survival rate does not differ between the morphs.
  相似文献   

16.
1. Individual movement behaviour governs several routine processes, and may scale up to important ecological processes, including dispersal. However, movement is affected by a wealth of factors, including abiotic conditions, flight performance, and behavioural traits. Although it has been historically assumed that insect flight is in the first place ruled by physiology and morphology, researchers have only recently begun to understand the potentially important role of behavioural traits. 2. This study aims to disentangle the relative importance of thermal conditions during development, and especially flight performance (capacity), versus behaviour (intrinsic motivation) in relation to movement attributes (i.e. time until take‐off, number of positions visited) under controlled laboratory conditions in the tropical butterfly Bicyclus anynana. 3. As predicted, links were found between flight performance (forced flight) and morphological traits (body size). However, this link was less pronounced for movement and exploratory behaviour, suggesting a more pronounced role of intrinsic motivation on the actual decision to move, or not. Thus, flight performance and movement may not be intimately associated. 4. Flight behaviour was mainly determined by sexual differences, with males showing better flight performance, higher mobility, and enhanced exploration than females. 5. Lower developmental temperatures increased thorax–abdomen ratio, thorax mass, and exploratory behaviour, and decreased wing loading. This may potentially aid flight capacity under thermally challenging conditions. 6. This study adds to the growing evidence that behavioural traits should not be neglected when investigating movement and dispersal, as they may well play a crucially important role.  相似文献   

17.
Age-dependent changes in flight performance, biochemical composition of flight muscles, and fresh mass of the flight muscles and ovaries were analysed in adult female two-spotted crickets, Gryllus bimaculatus. After the final moult the flight muscle mass increased significantly to a maximum at days 2 and 3. On day 2 the highest flight activity was also observed. Between days 2 and 3 the ovary weight started to rapidly increase due to vitellogenic egg growth, which continued at a high rate until day 10. With the onset of ovarial growth, flight performance decreased and the flight muscles started to histolyse. A high correlation between flight muscle mass and the content of protein, lipid, glycogen, and free carbohydrate in the flight muscle indicated that energy-rich substrates from the degrading flight muscles were used to fuel oogenesis, although flight muscle histolysis can provide only a small fraction of the substrates needed for egg production. In general, there was a clear trade-off between egg production and flight ability. Surprisingly, however, some females possessed well-developed ovaries but displayed no signs of flight muscle histolysis. This observation was corroborated by flight experiments which revealed that, although most flying females had small ovaries, some of them carried an appreciable amount of mature eggs, and thus, somehow managed to evade the oogenesis-flight syndrome.  相似文献   

18.
Normal and flight forms of adult cowpea weevils, Callosobruchus maculatus, within 24 hr after completing ecdysis, were analyzed for lipid content and composition. The flight forms had nearly twice as much total body lipid as did the normal insects but less body water. Most of the lipid increase in the flight form was due to triglycerides which was also the major lipid class in the normal form. No differences were found in the fatty acid composition of the two forms with oleic and palmitic acids accounting for over 56 and 22% of the total respectively. Females of both forms contained more total lipid and triglycerides than did males but the fatty acid composition did not differ. The relationship of lipid storage to flight and reproduction is discussed.  相似文献   

19.
ThomasMerckx  HansVan Dyck 《Oikos》2006,113(2):226-232
In evolutionary time, varying environments may lead to different morphs as a result of genetic adaptation and divergence or phenotypic plasticity. Landscapes that differ in the extent of habitat fragmentation may provide different selection regimes for dispersal, but also for other ecological functions. Several studies on flying insects have shown differences in flight morphology between landscapes, but whether such differences result from plastic responses have rarely been tested. We did a reciprocal transplant experiment with offspring of speckled wood butterfly females (Parargeaegeria) from three types of landscape differing in fragmentation: woodland landscape, landscape with woodland fragments and agricultural landscape with only hedgerows. Young caterpillars were allowed to grow individually on potted host grasses in small enclosures under the three landscape conditions (split‐brood design). Mortality in caterpillars was much higher in agricultural landscape compared to the other landscapes. Additive to the effect of landscape of development, landscape of origin also affected mortality rate in a similar way. Flight morphology of the adults resulting from the experiment differed significantly with landscape. Independent of the landscape of origin, males and females that developed in agricultural landscape were the heaviest and had the greatest wing loadings. Females that developed in agricultural landscape had higher relative thorax mass (i.e. greater flight muscle allocation) in line with adaptive predictions on altered dispersal behaviour with type of landscape. In males, relative thorax mass did not respond significantly relative to landscape of development, but males originating from landscape with woodland fragments allocated more into their thorax compared to males from the other types. We found significant G×E interactions for total dry mass and wing loading. Our results suggest the existence of phenotypic plasticity in butterfly flight morphology associated with landscape structure.  相似文献   

20.
Abstract Factors affecting the flight potential of Choristoneura conflictana, an insect that undergoes cyclical changes in population density, are investigated using computer‐linked flight mills. Female and male moths are flown for a 12‐h period and the longest single flight and total flight distance of each moth is recorded. After flight bioassays, moths are subjected to lipid extraction with a soxhlet apparatus to determine the effect of body lipid content on flight. Larger C. conflictana moths fly farther than smaller moths. Female C. conflictana fly farther than male moths but the effects of both mating status and moth age on the distance flown are dependent on sex. Mated females fly farther than virgins and older females fly farther than young females but these relationships do not occur in males. Body lipid content affects the distance flown by both females and males through a significant interaction with sex and age. The factors examined in this study will vary with density in natural populations and are predicted to be important indicators of flight potential and dispersal in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号