首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of these sites by truncation of the carboxyl-terminal 123 amino acid residues, resulted in reduced receptor phosphorylation of an in vivo specific substrate phospholipase C-gamma 1 to less than 50% compared to the wild-type receptor. The internalization rate constant Ke was also significantly lower in these mutants (0.15/min) compared to cells transfected with wild-type receptor (0.27/min). Additional mutation of tyrosine 992 to phenylalanine in the truncated receptor mutant (Dc-123F) further decreased the receptor internalization rate to a minimal level (ke = 0.07-0.10/min), equivalent to the ke measured for cells expressing kinase-negative receptor (A721). Moreover, tyrosine kinase activity of the Dc-123F receptor toward phospholipase C-gamma 1, compared to wild-type receptor, was reduced by 90%. Taken together, these results show that EGF receptor lacking five autophosphorylation sites functions similar to a kinase-negative receptor. Mutation of tyrosine residue Y992 alone in the context of full length EGF receptor, however, did not affect receptor internalization or kinase activity toward phospholipase C-gamma 1. These data indicate that tyrosine 992 is critical for substrate phosphorylation and internalization only in the context of the truncated receptor, and that minor autophosphorylation sites, such as Y992, may act as compensatory regulatory sties in the absence of the major EGF receptor autophosphorylation sites.  相似文献   

2.
We have utilized site-directed mutants to study the role of autophosphorylation of the epidermal growth factor (EGF) receptor in the regulation of receptor kinase activity and ligand-induced endocytosis. A single mutation of the major autophosphorylation site, Y1173, and a double mutation of two autophosphorylation sites, Y1173 and Y1148, did not inhibit kinase activity in vivo, using PLC gamma 1 as a specific substrate for the EGF receptor kinase. The simultaneous mutation of three major autophosphorylation sites (Y1173, Y1148, Y1068), however, caused more than a 50% decrease in EGF-induced tyrosine phosphorylation of PLC gamma 1. The triple mutation also resulted in a substantial inhibition of the EGF-receptor endocytic system. We have used three types of experiments to analyze internalization, recycling, and degradation of EGF in cells with these mutants or the wild-type receptor. Using a simple mathematical model we have shown that the internalization rate constant is 2-fold lower in cells expressing the triple mutation receptor (F3 cells) than in cells expressing wild-type EGF receptor (wild-type cells). However, the rate constant for recycling was similar in both cell types. The EGF degradation rate constant was also lower in F3 cells. EGF-induced EGF receptor degradation was slower in F3 cells (t1/2 = 4 h) than in wild-type cells (t1/2 = 1 h). Therefore, our results suggest that multiple autophosphorylations of the carboxyl terminus of the EGF receptor are required for EGF receptor kinase activation, and for the internalization and intracellular processing of the EGF.receptor complex.  相似文献   

3.
Early events in ligand-induced endocytosis of the EGF receptor have been examined. A mutant EGF receptor devoid of intrinsic protein-tyrosine kinase activity bound EGF and dimerized normally yet failed to undergo ligand-induced internalization. Immunofluorescence microscopy revealed that receptors lacking kinase activity failed to undergo the ligand-induced internalization characteristic of receptors with kinase activity. Monoclonal anti-phosphotyrosine antibodies effectively inhibited phosphorylation of exogenous substrates in vitro and, when microinjected into cells containing active EGF receptors, prevented internalization of the receptor when cells were subsequently challenged with EGF. These results point to a crucial role for the kinase activity of the EGF receptor in the process of ligand-induced endocytosis of receptors, and imply that a phosphorylated substrate(s) is required.  相似文献   

4.
To assess the functional significance of phosphorylation of the epidermal growth factor (EGF) receptor at Thr654, we compared the effects of 12-O-tetradecanoyl-13-acetate (TPA) on ligand-induced internalization and down-regulation between wild-type and mutant receptors that contain an alanine substitution at position 654. Activation of protein kinase C with TPA blocked EGF-induced internalization and down-regulation of Thr654 receptors and inhibited in vivo tyrosine kinase activity by 80%. TPA did not inhibit transferrin receptor internalization or constitutive EGF receptor internalization, suggesting that protein kinase C activation inhibits only the ligand-induced process. Inhibition by TPA of induced internalization, down-regulation, and kinase activity required threonine at position 654 since full-length Ala654 EGF receptors were significantly resistant to TPA inhibition of these ligand-induced activities. However, C'-terminal truncation further enhanced this resistance to TPA inhibition. The EGF-dependent internalization of kinase-inactive receptors truncated at residue 1022 was also impaired by TPA in Thr654 receptors, but not in Ala654 receptors, indicating that phosphorylation at Thr654 also interferes with tyrosine kinase-independent receptor activities. We conclude that the dominant regulatory effect of protein kinase C on the EGF receptor is mediated through phosphorylation at Thr654 which effectively inactivates the receptor. The submembrane region of the EGF receptor appears to regulate transmission of conformational information from the extracellular ligand-binding site to the cytoplasmic kinase and regulatory domains.  相似文献   

5.
In A431 cells, depletion of cholesterol with methyl-beta-cyclodextrin induced an increase in both basal and epidermal growth factor (EGF)-stimulated EGF receptor phosphorylation. This increase in phosphorylation was site-specific, with significant increases occurring at Tyr845, Tyr992, and Tyr1173, but only minor changes at Tyr1045 and Tyr1068. The elevated level of receptor phosphorylation was associated with an increase in the intrinsic kinase activity of the EGF receptor kinase, possibly as a result of the cyclodextrin-induced enhancement of the phosphorylation of Tyr845, a site in the kinase activation loop known to be phosphorylated by pp60src. Cholesterol and its enantiomer (ent-cholesterol) were used to investigate the molecular basis for the modulation of EGF receptor function by cholesterol. Natural cholesterol (nat-cholesterol) was oxidized substantially more rapidly than ent-cholesterol by cholesterol oxidase, a protein that contains a specific binding site for the sterol. By contrast, the ability of nat- and ent-cholesterol to interact with sphingomyelins and phosphatidylcholine and to induce lipid condensation in a monolayer system was the same. These data suggest that, whereas cholesterol-protein interactions may be sensitive to the absolute configuration of the sterol, sterol-lipid interactions are not. nat- and ent-cholesterol were tested for their ability to physically reconstitute lipid rafts following depletion of cholesterol. nat- and ent-cholesterol reversed to the same extent the enhanced phosphorylation of the EGF receptor that occurred following removal of cholesterol. Furthermore, the enantiomers showed similar abilities to reconstitute lipid rafts in cyclodextrin-treated cells. These data suggest that cholesterol most likely affects EGF receptor function because of its physical effects on membrane properties, not through direct enantioselective interactions with the receptor.  相似文献   

6.
7.
Occupancy-induced down-regulation of cell surface epidermal growth factor (EGF) receptors attenuates signal transduction. To define mechanisms through which down-regulation of this class of growth factor receptors occurs, we have investigated the relative roles of ligand-induced internalization and recycling in this process. Occupied, kinase-active EGF receptors were internalized through a high affinity, saturable endocytic system at rates up to 10-fold faster than empty receptors. In contrast, full length EGF receptors lacking tyrosine kinase activity underwent internalization at a rate independent of occupancy. This "kinase-independent" internalization rate appeared to reflect constitutive receptor internalization since it was similar to the internalization rate of both receptors lacking a cytoplasmic domain and of antibodies bound to empty receptors. EGF internalized by either kinase-active or kinase-inactive receptors was efficiently recycled and was found within endosomes containing recycling transferrin receptors. However, targeting of internalized receptors to lysosomes did not require receptor kinase activity. All receptors that displayed ligand-induced internalization also underwent down-regulation, indicating that the proximal cause of down-regulation is occupancy-induced endocytosis. Tyrosine kinase activity greatly enhances this process by stabilizing receptor association with the endocytic apparatus.  相似文献   

8.
Phosphorylation of the RAF-1 protooncogene product and activation of its associated serine/threonine kinase are common features of the response of cells to peptide growth factors. We have used wild-type and mutant epidermal growth factor (EGF) receptors to investigate mechanisms of RAF-1 phosphorylation. In vivo EGF treatment rapidly stimulated phosphorylation of RAF-1 exclusively on serine residues. Stimulation of RAF-1 phosphorylation occurred at 37 degrees C but not at 4 degrees C and persisted after dissociation of EGF from its receptor. EGF-induced RAF-1 serine phosphorylation required the intrinsic tyrosine kinase activity of the EGF receptor but was independent of EGF receptor self-phosphorylation and of ligand-induced receptor internalization. Down-regulation of protein kinase C did not affect the EGF-induced increase in RAF-1 phosphorylation. These data suggest that the activated tyrosine kinase activity of the EGF receptor enhances serine phosphorylation of RAF-1 via an intermediary molecule(s).  相似文献   

9.
Signals that can mediate ligand-induced receptor internalization and calcium regulation are present in a 48-amino acid "calcium-internalization" domain in the C' terminus of the epidermal growth factor (EGF) receptor. The basis of calcium and internalization regulation signalled by this 48-amino acid sequence was analyzed using deletion and substitution mutant receptors. Cells expressing truncated receptors containing either the NH2- or COOH-terminal portion of the 48-residue domain displayed high affinity EGF-dependent endocytosis and receptor down-regulation. These endocytosis-competent EGF receptor mutants that lacked any autophosphorylation site were unable to increase the concentration of intracellular calcium. To investigate the role of self-phosphorylation in EGF-induced calcium mobilization, phenylalanine was substituted for the single autophosphorylated tyrosine residue in this region of an internalization-competent truncated receptor. The receptor-mediated calcium response was abolished, while ligand-dependent receptor internalization was unimpaired. These results demonstrate that EGF-dependent receptor endocytosis and calcium mobilization are separate events. Tyrosine self-phosphorylation is required for increased [Ca2+]i, while structural features distinct from autophosphorylation are required for receptor internalization.  相似文献   

10.
The intrinsic protein-tyrosine kinase activity of the epidermal growth factor (EGF) receptor is required for signal transduction. Increased protein-tyrosine kinase activity is observed following the binding of EGF to the receptor. However, signaling is rapidly desensitized during EGF treatment. We report that EGF receptors isolated from desensitized cells exhibit a lower protein-tyrosine kinase activity than EGF receptors isolated from control cells. The mechanism of desensitization of kinase activity can be accounted for, in part, by the EGF-stimulated phosphorylation of the receptor at Ser1046/7, a substrate for the multifunctional calmodulin-dependent protein kinase II in vitro. Mutation of Ser1046/7 by replacement with Ala residues blocks desensitization of the EGF receptor protein-tyrosine kinase activity. Furthermore, this mutation causes a marked inhibition of the EGF-stimulated endocytosis and down-regulation of cell surface receptors. Thus, the phosphorylation site Ser1046/7 is required for EGF receptor desensitization in EGF-treated cells. This regulatory phosphorylation site is located at the carboxyl terminus of the EGF receptor within the subdomain that binds src homology 2 regions of signaling molecules.  相似文献   

11.
Activated epidermal growth factor receptors recruit various intracellular proteins leading to signal generation and endocytic trafficking. Although activated receptors are rapidly internalized into the endocytic compartment and subsequently degraded in lysosomes, the linkage between signaling and endocytosis is not well understood. Here we show that EGF stimulation of NR6 cells induces a specific, rapid and transient activation of Rab5a. EGF also enhanced translocation of the Rab5 effector, early endosomal autoantigen 1 (EEA1), from cytosol to membrane. The activation of endocytosis, fluid phase and receptor mediated, by EGF was enhanced by Rab5a expression, but not by Rab5b, Rab5c, or Rab5a truncated at the NH(2) and/or COOH terminus. Dominant negative Rab5a (Rab5:N34) blocked EGF-stimulated receptor-mediated and fluid-phase endocytosis. EGF activation of Rab5a function was dependent on tyrosine residues in the COOH-terminal domain of the EGF receptor (EGFR). Removal of the entire COOH terminus by truncation (c'973 and c'991) abrogated ligand-induced Rab5a activation of endocytosis. A "kinase-dead" EGFR failed to stimulate Rab5a function. However, another EGF receptor mutant (c'1000), with the kinase domain intact and a single autophosphorylation site effectively signaled Rab5 activation. These results indicate that EGFR and Rab5a are linked via a cascade that results in the activation of Rab5a and that appears essential for internalization. The results point to an interdependent relationship between receptor activation, signal generation and endocytosis.  相似文献   

12.
After binding of epidermal growth factor (EGF), the EGF receptor (EGFR) becomes autophosphorylated via tyrosine. The ligand-activated receptor is internalized by endocytosis and subsequently degraded in the lysosomal pathway. To follow EGFR activation after EGF stimulation, we generated antisera to the EGFR phosphotyrosine sites pY992 and pY1173. The SH2 region of Shc binds to both these sites. Both antisera identified EGFR after EGF binding and did not crossreact with the unactivated receptor. The intracellular distribution of phosphorylated EGFR after ligand binding was traced by two-color immunofluorescence confocal microscopy and immunoelectron microscopy. Before EGF stimulation EGFR was primarily located along the cell surface. When internalization of activated EGFR was inhibited by incubation with EGF on ice, Y992- and Y1173-phosphorylated EGFR were located along the plasma membrane. Ten minutes after internalization at 37C, Y992- and Y1173-phosphorylated EGFR were almost exclusively located in early endosomes, as shown by co-localization with EEA1. Immunoelectron microscopy confirmed that phosphorylated EGFR was located in intracellular vesicles resembling early endosomes. After EGF stimulation, the adaptor protein Shc redistributed to EGFR-containing early endosomes. Our results indicate that EGFR activation of Shc via tyrosine-phosphorylated Y992 and Y1173 occurred in early endocytic compartments, and support a role for membrane trafficking in intracellular signaling.  相似文献   

13.
The epidermal growth factor receptor (EGFr) regulates many cellular functions, such as proliferation, apoptosis, and ion transport. Our aim was to investigate whether long term treatment with interferon-γ (IFN-γ) modulates EGF activation of downstream signaling pathways in intestinal epithelial cells and if this contributes to dysregulation of epithelial ion transport in inflammation. Polarized monolayers of T(84) and HT29/cl.19A colonocytes were preincubated with IFN-γ prior to stimulation with EGF. Basolateral potassium transport was studied in Ussing chambers. We also studied inflamed colonic mucosae from C57BL/6 mice treated with dextran sulfate sodium or mdr1a knock-out mice and controls. IFN-γ increased intestinal epithelial EGFr expression without increasing its phosphorylation. Conversely, IFN-γ caused a significant decrease in EGF-stimulated phosphorylation of specific EGFr tyrosine residues and activation of ERK but not Akt-1. In IFNγ-pretreated cells, the inhibitory effect of EGF on carbachol-stimulated K(+) channel activity was lost. In inflamed colonic tissues, EGFr expression was significantly increased, whereas ERK phosphorylation was reduced. Thus, although it up-regulates EGFr expression, IFN-γ causes defective EGFr activation in colonic epithelial cells via reduced phosphorylation of specific EGFr tyrosine residues. This probably accounts for altered downstream signaling consequences. These observations were corroborated in the setting of colitis. IFN-γ also abrogates the ability of EGF to inhibit carbachol-stimulated basolateral K(+) currents. Our data suggest that, in the setting of inflammation, the biological effect of EGF, including the inhibitory effect of EGF on Ca(2+)-dependent ion transport, is altered, perhaps contributing to diarrheal and other symptoms in vivo.  相似文献   

14.
An important negative control mechanism in the signaling of epidermal growth factor (EGF) is the endocytosis and subsequent degradation of activated EGF receptors. Eps15 and its related partner Eps15R play a key role in clathrin-mediated endocytosis of transmembrane receptors. Upon EGF stimulation of the cell, Eps15 becomes both phosphorylated on tyrosine residues and monoubiquitinated. Although tyrosine phosphorylation of Eps15 has been implicated in EGF receptor internalization, the function of Eps15 ubiquitination is not known. Using a mutational approach, we have found that the second ubiquitin-interacting motif (UIM) of Eps15 and Eps15R is essential for their ubiquitination. This UIM partially overlaps with the recently characterized nuclear export signal in Eps15. We show that these two overlapping motifs have different structural requirements with respect to nuclear export signal versus ubiquitination signal activity. Our data demonstrate that the UIM does not contain the ubiquitin acceptor site but functions as a recruitment site for the ubiquitination machinery leading to the monoubiquitination of both Eps15 and Eps15R.  相似文献   

15.
Cells expressing mutant epidermal growth factor (EGF) receptors have been used to study mechanisms through which EGF increases phospholipase C (PLC) activity. C-terminal truncation mutant EGF receptors are markedly impaired in their ability to increase inositol phosphate formation compared with wild-type EGF receptors. Mutation of the single tyrosine self-phosphorylation site at residue 992 to phenylalanine in an EGF receptor truncated at residue 1000 abolished the ability of EGF to increase inositol phosphate formation. C-terminal deletion mutant receptors that are impaired in their ability to increase inositol phosphate formation effectively phosphorylate PLC-gamma at the same tyrosine residues as do wild-type EGF receptors. EGF enhances PLC-gamma association with wild-type EGF receptors but not with mutant receptors lacking sites of tyrosine phosphorylation. These results indicate that formation of a complex between self-phosphorylated EGF receptors and PLC-gamma is necessary for enzyme activation in vivo. We propose that both binding of PLC-gamma to activated EGF receptors and tyrosine phosphorylation of the enzyme are necessary to elicit biological responses. Kinase-active EGF receptors lacking sites of tyrosine phosphorylation are unable to signal increased inositol phosphate formation and increases in cytosolic Ca2+ concentration.  相似文献   

16.
Ligand-induced desensitization of the epidermal growth factor receptor (EGFR) is controlled by c-Cbl, a ubiquitin ligase that binds multiple signaling proteins, including the Grb2 adaptor. Consistent with a negative role for c-Cbl, here we report that defective Tyr1045 of EGFR, an inducible c-Cbl docking site, enhances the mitogenic response to EGF. Signaling potentiation is due to accelerated recycling of the mutant receptor and a concomitant defect in ligand-induced ubiquitylation and endocytosis of EGFR. Kinetic as well as morphological analyses of the internalization-defective mutant receptor imply that c-Cbl-mediated ubiquitylation sorts EGFR to endocytosis and to subsequent degradation in lysosomes. Unexpectedly, however, the mutant receptor displayed significant residual ligand-induced ubiquitylation, especially in the presence of an overexpressed c-Cbl. The underlying mechanism seems to involve recruitment of a Grb2 c-Cbl complex to Grb2-specific docking sites of EGFR, and concurrent acceleration of receptor ubiquitylation and desensitization. Thus, in addition to its well-characterized role in mediating positive signals, Grb2 can terminate signal transduction by accelerating c-Cbl-dependent sorting of active tyrosine kinases to destruction.  相似文献   

17.
To identify proteins that participate in clathrin-mediated endocytosis of the epidermal growth factor receptor (EGFR), 13 endocytic proteins were depleted in HeLa cells using highly efficient small interfering RNAs that were designed using a novel selection algorithm. The effects of small interfering RNAs on the ligand-induced endocytosis of EGFR were compared with those effects on the constitutive internalization of the transferrin receptor. The knock-downs of clathrin heavy chain and dynamin produced maximal inhibitory effects on the internalization of both receptors. Depletion of alpha, beta2, or micro2 subunits of AP-2 reduced EGF and transferrin internalization rates by 40-60%. Down-regulation of several accessory proteins individually had no effect on endocytosis but caused significant inhibition of EGF and transferrin endocytosis when the homologous proteins were depleted simultaneously. Surprisingly, knockdown of clathrin-assembly lymphoid myeloid leukemia protein, CALM, did not influence transferrin endocytosis but considerably affected EGFR internalization. Thus, CALM is the second protein besides Grb2 that appears to play a specific role in EGFR endocytosis. This study demonstrates that the efficient gene silencing by rationally designed small interfering RNA can be used as an approach to functionally analyze the entire cellular machineries, such as the clathrin-coated pits and vesicles.  相似文献   

18.
The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.  相似文献   

19.
Tyrosine phosphorylation of the beta2 subunit of clathrin adaptor complex AP-2 was detected in three types of cells treated with epidermal growth factor (EGF). The tyrosine phosphorylation was observed during recruitment of EGF receptors into coated pits at 4 degrees C and reached maximum at 37 degrees C at post-recruitment stages of endocytosis. An inhibitor of EGF receptor kinase completely abolished this phosphorylation in all cell types, whereas the inhibitor of Src family kinases partially inhibited beta2 phosphorylation in A-431 cells but not in HeLa cells. By using beta2 subunit tagged with yellow fluorescent protein that is effectively assembled into AP-2 complex, the major phosphorylation site of beta2 was mapped to Tyr-6. Analysis of cells expressing dominant-interfering mutant mu2 subunit of AP-2 suggested that beta2 phosphorylation is partially mediated by the receptor interaction with the mu2 subunit. Mutation of leucine residues 1010 and 1011 motif in the EGF receptor resulted in the severe inhibition of beta2 tyrosine phosphorylation. From these data, we propose that interactions of the EGF receptor with AP-2 mediated by the receptor 974YRAL and di-leucine motifs may contribute to beta2 tyrosine phosphorylation. Surprisingly, mutation of the Leu-1010/Leu-1011 motif resulted in impaired degradation of EGF receptors, suggesting the role of this motif in lysosomal targeting of the receptor.  相似文献   

20.
We reported previously that a conformation-specific antibody, Ab P2, to a 16-amino acid peptide (Glu-Gly-Tyr-Lys-Lys-Lys-Tyr-Gln-Gln-Val-Asp-Glu-Glu-Phe-Leu-Arg) of the cytoplasmic domain of the beta-type platelet-derived growth factor receptor also recognizes the epidermal growth factor (EGF) receptor. Although the antibody is not directed to phosphotyrosine, it recognizes in immunoprecipitation the activated and hence phosphorylated form of both receptors. In P2 peptide, there are two tripeptide sequences, Asp-Glu-Glu and Tyr-Gln-Gln, that are also present in the EGF receptor. Our present studies using either EGF receptor C-terminal deletion mutants or point mutations (Tyr-->Phe) and our previous studies on antibody inhibition by P2-derived peptides suggest that Gln-Gln in combination with Asp-Glu-Glu forms a high-affinity complex with Ab P2 and that such complex formation is dependent on tyrosine phosphorylation. Of the five phosphate acceptor sites in the EGF receptor, clustered in the extreme C-terminal tail, phosphorylation of three tyrosine residues (992, 1068, and 1086) located between Asp-Glu-Glu and Gln-Gln is necessary for Ab P2 binding. In contrast, the acceptor sites Tyr 1173 and 1148 play no role in the conformation change. Asp-Glu-Glu and Gln-Gln are located 169 amino acids apart, and it is highly likely that the interactions among three negatively charged phosphotyrosine residues in the receptor C terminus may result in the bending of the peptide chain in such a way that these two peptides come close to each other to form an antibody-binding site. Such a possibility is also supported by our finding that receptor dephosphorylation results in complete loss of Ab P2-binding activity. In conclusion, we have identified a domain within the cytoplasmic part of the EGF receptor whose conformation is altered by receptor phosphorylation; furthermore, we have identified the tyrosine residues that positively regulate this conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号