首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper is essential for human growth and survival. Enterocytes mediate the absorption of dietary copper from the intestinal lumen into blood as well as utilizing copper for their biosynthetic needs. Currently, the pathways for copper entry into enterocytes remain poorly understood. We demonstrate that the basolateral copper uptake into intestinal cells greatly exceeds the apical uptake. The basolateral but not apical transport is mediated by the high affinity copper transporter hCTR1. This unanticipated conclusion is supported by cell surface biotinylation and confocal microscopy of endogenous hCTR1 in Caco2 cells as well as copper influx measurements that show saturable high affinity uptake at the basolateral but not the apical membrane. Basolateral localization of hCTR1 and polarized copper uptake are also conserved in T84 cells, models for intestinal crypt cells. The lateral localization of hCTR1 seen in intestinal cell lines is recapitulated in immunohistochemical staining of mouse intestinal sections. Biochemical and functional assays reveal the basolateral localization of hCTR1 also in renal Madin-Darby canine kidney cells and opossum kidney cells. Overexpression of hCTR1 in Madin-Darby canine kidney cells results in both apical and basolateral delivery of the overexpressed protein and greatly enhanced copper uptake at both cell surfaces. We propose a model of intestinal copper uptake in which basolateral hCTR1 plays a key role in the physiologically important delivery of copper from blood to intracellular proteins, whereas its role in the initial apical uptake of dietary copper is indirect.  相似文献   

2.
The redox active metal copper is an essential cofactor in critical biological processes such as respiration, iron transport, oxidative stress protection, hormone production, and pigmentation. A widely conserved family of high affinity copper transport proteins (Ctr proteins) mediates copper uptake at the plasma membrane. However, little is known about Ctr protein topology, structure, and the mechanisms by which this class of transporters mediates high affinity copper uptake. In this report, we elucidate the topological orientation of the yeast Ctr1 copper transport protein. We show that a series of clustered methionine residues in the hydrophilic extracellular domain and an MXXXM motif in the second transmembrane domain are important for copper uptake but not for protein sorting and delivery to the cell surface. The conversion of these methionine residues to cysteine, by site-directed mutagenesis, strongly suggests that they coordinate to copper during the process of metal transport. Genetic evidence supports an essential role for cooperativity between monomers for the formation of an active Ctr transport complex. Together, these results support a fundamentally conserved mechanism for high affinity copper uptake through the Ctr proteins in yeast and humans.  相似文献   

3.
Copper exists in two oxidation states, cuprous (Cu1+) and cupric (Cu2+), which, respectively, can donate or accept electrons. The fact that copper has two readily interconvertible redox states makes it a catalytic co-factor for many important enzymes. Over the past years, work in a number of laboratories has clearly demonstrated that studies in yeast have served as a springboard for identifying cellular components and processes involved in copper uptake and distribution. In several cases, it has been shown that mammalian proteins are capable of functionally replacing yeast proteins, thereby revealing their remarkable functional conservation. For high-affinity copper transport into cells, it has been shown that copper transporters of the Ctr family are required. Upon entering the cell, copper is partitioned to different proteins and into different compartments within the cell. Given the potential toxicity of copper, specialized proteins bind copper after it enters the cell and subsequently donate the bound copper to their corresponding recipient proteins. Three copper-binding proteins, Ccs1, Cox17, and Atx1, have been identified that serve as "copper chaperones" to deliver copper. double dagger.  相似文献   

4.
Plasma proteins rather than amino acid chelates are the direct sources of copper for mammalian cells. In continuing studies on the mechanisms by which albumin and transcuprein deliver copper and the potential involvement of CTR1, rates of uptake from these proteins and Cu-histidine were compared in cells with/without CTR1 knockdown or knockout. siRNA knocked down expression of CTR1 mRNA 60-85% in human mammary epithelial and hepatic cell models, but this had little or no effect on uptake of 1?μM Cu(II) attached to pure human albumin or alpha-2-macroglobulin. Mouse embryonic fibroblasts that did/did not express Ctr1 took up Cu(II) bound to albumin about as readily as from the histidine complex at physiological concentrations and by a single saturable process. Uptake from mouse albumin achieved a 2-4-fold higher Vmax (with a lower Km) than from heterologous human albumin. Maximum uptake rates from Cu(I)-histidine were >12-fold higher (with higher Km) than for Cu(II), suggesting mediation by a reductase. The presence of cell surface Cu(II) and Fe(III) reductase activity responding only slightly to dehydroascorbate was verified. Excess Fe(III) inhibited uptake from albumin-Cu(II). Ag(I) also inhibited, but kinetics were not or un-competitive. In general there was little difference in rates/kinetics of uptake in the Ctr1+/+ and -/- cells. Endocytosis was not involved. We conclude that plasma proteins deliver Cu(II) to homologous cells with greater efficiency than ionic copper at physiological concentrations, probably through the mediation of a Steap Cu(II)-reductase, and confirm the existence of an additional copper uptake system in mammalian cells.  相似文献   

5.
Distinct mechanisms for Ctr1-mediated copper and cisplatin transport   总被引:3,自引:0,他引:3  
The Ctr1 family of integral membrane proteins is necessary for high affinity copper uptake in eukaryotes. Ctr1 is also involved in cellular accumulation of cisplatin, a platinum-based anticancer drug. Although the physiological role of Ctr1 has been revealed, the mechanism of action of Ctr1 remains to be elucidated. To gain a better understanding of Ctr1-mediated copper and cisplatin transport, we have monitored molecular dynamics and transport activities of yeast Saccharomyces cerevisiae Ctr1 and its mutant alleles. Co-expression of functional Ctr1 monomers fused with either cyan or yellow fluorescent protein resulted in fluorescence resonance energy transfer (FRET), which is consistent with multimer assembly of Ctr1. Copper near the K(m) value of Ctr1 enhanced FRET in a manner that correlated with cellular copper transport. In vitro cross-linking of Ctr1 confirmed that copper-induced FRET reflects conformational changes within pre-existing Ctr1 complexes. FRET assays in membrane-disrupted cells and protein extracts showed that intact cell structure is necessary for Ctr1 activity. Despite Ctr1-dependent cellular accumulation, cisplatin did not change Ctr1 FRET nor did it attenuate copper-induced FRET. A Ctr1 allele defective in copper transport enhanced cellular cisplatin accumulation. N-terminal methionine-rich motifs that are dispensable for copper transport play a critical role for cisplatin uptake. Taken together, our data reveal functional roles for structural remodeling of the Ctr1 multimeric complex in copper transport and suggest distinct mechanisms employed by Ctr1 for copper and cisplatin transport.  相似文献   

6.
The mechanism of copper uptake by cells has been the subject of controversy for some time. This paper examines the possibility of a role for albumin in the uptake of copper by fibroblasts. Although the cells could accumulate copper from a copper-albumin complex, there was no evidence for either copper-albumin or albumin receptors on the cell surface. The possibility of a surface exchange mechanism for copper was examined. While copper uptake showed saturation with increasing concentrations of labelled copper-albumin, adding unlabelled copper to the incubation medium did not inhibit uptake. Adding albumin or histidine to the copper-albumin complex resulted in an inhibition of copper uptake. The results can only be explained by the cell taking up free copper from the incubation medium, with the albumin then releasing its copper to maintain the equilibrium between free and bound metal. Since, in vivo there is essentially no free copper in serum, it is concluded that albumin is most unlikely to play a role in the uptake of copper by fibroblasts.  相似文献   

7.
Mitochondria contain two enzymes, Cu,Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondrial copper handling with other, extramitochondrial copper trafficking pathways. The recent finding that mitochondrial proteins with established roles in CcO assembly can also effect changes in cellular copper levels by modulating copper efflux from the cell supports a mechanistic link between organellar and cellular copper metabolism. However, the proteins and molecular mechanisms that link trafficking of copper to and from the organelle with other cellular copper trafficking pathways are unknown. This review documents our current understanding of copper trafficking to, and within, the mitochondrion for metallation of CcO and Sod1; the pathways by which the two copper centers in CcO are formed; and, the interconnections between mitochondrial function and the regulation of cellular copper homeostasis.  相似文献   

8.
Mitochondria contain two enzymes, Cu,Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondrial copper handling with other, extramitochondrial copper trafficking pathways. The recent finding that mitochondrial proteins with established roles in CcO assembly can also effect changes in cellular copper levels by modulating copper efflux from the cell supports a mechanistic link between organellar and cellular copper metabolism. However, the proteins and molecular mechanisms that link trafficking of copper to and from the organelle with other cellular copper trafficking pathways are unknown. This review documents our current understanding of copper trafficking to, and within, the mitochondrion for metallation of CcO and Sod1; the pathways by which the two copper centers in CcO are formed; and, the interconnections between mitochondrial function and the regulation of cellular copper homeostasis.  相似文献   

9.
Uptake of copper by mouse hepatocytes   总被引:2,自引:0,他引:2  
This study has investigated the uptake of copper by mouse hepatocytes. The cells gave similar results whether they were used right after isolation or maintained overnight on collagen-coated dishes. Uptake from cells in suspension followed two phases: an initial rapid binding followed by a linear uptake phase. The two phases were not so easily distinguishable in cells grown in culture where uptake was linear over the first hour. The uptake showed saturation but may not have followed simple kinetics. Histidine stimulated uptake in a concentration-dependent manner, as did some other amino acids, but copper had very little effect on histidine uptake. The process was not dependent on intracellular adenosine triphosphate (ATP), since inhibitors that substantially reduced ATP levels inside the cell did not alter copper uptake. The inhibitors, however, blocked histidine uptake to varying degrees, suggesting that copper and histidine are taken up by different pathways. The uptake was reduced markedly by N-ethyl maleimide, and preincubation of the cells with "Pronase" resulted in a decrease of uptake. A model for the uptake of copper by hepatocytes that incorporates the data presented in this paper with that produced by earlier workers is suggested.  相似文献   

10.
11.
Recent years have witnessed an explosion in the breadth of investigations on transition metal homeostasis and the subsequent depth of our understanding of metals in biology. Many genes and proteins that serve in the uptake, distribution, sensing and detoxification of one such transition metal, copper, have been identified. Through genetic and biochemical studies, the molecular details of copper uptake are being elucidated, and evidence suggests a largely conserved mechanism for copper acquisition and distribution from yeast to humans. Investigations of the mitochondrial copper pathway reveal the complexity surrounding copper delivery to cytochrome oxidase and highlight additional roles for some of the participants in copper homeostasis, such as a copper chaperone that influences the subcellular distribution of its target for copper incorporation. Furthermore, our understanding of the structure and function of copper transporters, chaperones and cupro-proteins, coupled with the emergence of additional model systems, is providing surprising examples of the integration of copper homeostasis with other physiological and pathophysiological processes and states, such as cancer, aging and virulence.  相似文献   

12.
Copper is an essential micronutrient in humans and is required for a wide range of physiological processes, including neurotransmitter biosynthesis, oxidative metabolism, protection against reactive oxygen species, and angiogenesis. The first step in the acquisition of dietary copper is absorption from the intestinal lumen. The major human high-affinity copper uptake protein, human copper transporter hCTR1, was recently shown to be at the basolateral or blood side of both intestinal and renal epithelial cell lines and thus does not play a direct role in this initial step. We sought to functionally identify the major transport pathways available for the absorption of dietary copper across the apical intestinal membrane using Caco2 cells, a well-established model for human enterocytes. The initial rate of apical copper uptake into confluent monolayers of Caco2 cells is greatly elevated if amino acids and serum proteins are removed from the growth media. Uptake from buffered saline solutions at neutral pH (but not at lower pH) is inhibited by either d- or l-histidine, unaltered by the removal of sodium ions, and inhibited by ~90% when chloride ions are replaced by gluconate or sulfate. Chloride-dependent copper uptake occurs with Cu(II) or Cu(I), although Cu(I) uptake is not inhibited by histidine, nor by silver ions. A well-characterized inhibitor of anion exchange systems, DIDS, inhibited apical copper uptake by 60-70%, while the addition of Mn(II) or Fe(II), competitive substrates for the divalent metal transporter DMT1, had no effect on copper uptake. We propose that anion exchangers play an unexpected role in copper absorption, utilizing copper-chloride complexes as pseudo-substrates. This pathway is also observed in mouse embryonic fibroblasts, human embryonic kidney cells, and Cos-7 cells. The special environment of low pH, low concentration of protein, and protonation of amino acids in the early intestinal lumen make this pathway especially important in dietary copper acquisition.  相似文献   

13.
Cultured rat hepatoma cells (HTC-cells) were used to study the uptake of copper and zinc from a minimal salt-glucose medium, supplemented with albumin from different species or with ovalbumin. Competitive equilibrium dialysis showed that at low molar ratios of metal/protein (less than 1) the affinity for copper of human and bovine albumin was about equal, but that of dog albumin or ovalbumin was much lower. Only a small difference in affinity for zinc could be detected between human albumin and ovalbumin. Supplementing the medium with the different proteins the rate of copper uptake in the cell at a given molar Cu/protein ratio increased as follows: human albumin congruent to bovine albumin less than dog albumin less than ovalbumin. When the molar Cu/protein ratio was increased, a discontinuity was seen with all three albumin species at a ratio of about 1. In contrast, the zinc uptake mimics that of Cu/ovalbumin, and no discontinuity was observed using different molar Zn/protein ratios. These results indicate that the rate of copper and zinc uptake depends strongly on its affinity for the protein: a low affinity leads to a high uptake. The results suggest further that at physiologic concentrations zinc is taken up by a mechanism different from that for copper.  相似文献   

14.
铜离子稳态平衡分子机理研究进展   总被引:2,自引:0,他引:2  
朱志兀  姚琳 《生命科学》2012,(8):847-857
铜离子是生物体不可缺少的微量元素。作位酶的辅助因子,铜离子驱动着包括细胞呼吸、神经递质的传递、铁离子的摄取和抵抗氧化应激在内的重要生理过程。然而,过量时,铜离子是有害的,能损坏像DNA、蛋白质和脂肪这样的生物分子。正因为如此,生物体必须平衡细胞体内铜离子的水平。铜离子稳态平衡相关的遗传缺陷是造成Menke和Wilson疾病的原因。铜离子也被发现与癌症和神经退行性疾病有关。对酵母和其他生物体的研究发现,存在铜离子的摄取、分送、储存、排泄和抵抗毒性水平铜离子的专一机制。调控这些专一机制的铜离子信号分子是细胞平衡铜这个必不可少却又有害的离子的关键。  相似文献   

15.
Copper metallochaperones represent a new family of soluble, low-molecular-weight proteins that function to deliver copper to specific sites within a cell. How the metallochaperones acquire their copper, however, is not known. In this study, we have conducted a survey of known metal ion transporters in bakers' yeast, Saccharomyces cerevisiae, to identify those that contribute copper to pathways involving the metallochaperones Atxlp and Lys7p. The results indicatethat, in addition to the well known Ctr1p and Ctr3p high-affinity copper transporters, the metallochaperones can acquire their copper through pathways involving the relatively non-specific divalent metal ion transporter Fet4p and the putative low-affinitycopper transporter Ctr2p. We have examined the localization of Ctr2p using an epitope tagged version of the protein and find that Ctr2p does not localize to the cell surface but may operate at the level of the vacuole to mobilize intracellular copper. Inaddition to Ctrlp, Ctr2p, Ctr3p and Fet4p, other metal transport systems can act as upstream donors of copper for the metallochaperones when copper availability in the medium is increased. Although the nature of these auxiliary systems is unknown, they do not appear to involve the yeast members of the Nramp family of divalent transporters, or uptake mechanisms that involve endocytosis. Since vastly different metal transporters located at either the cell surface or intracellular sites can all contribute copper to metallochaperones, it is unlikely that the metallochaperones directly interact with the metal transporters to obtain the metal.  相似文献   

16.
K L Hill  R Hassett  D Kosman    S Merchant 《Plant physiology》1996,112(2):697-704
A saturable and temperature-dependent copper uptake pathway has been identified in Chlamydomonas reinhardtii. The uptake system has a high affinity for copper ions (Km approximately 0.2 microM) and is more active in cells that are adapted to copper deficiency than to cells grown in a medium containing physiological (submicromolar to micromolar) copper ion concentrations. The maximum velocity of copper uptake by copper-deficient cells (169 pmol h-1 10(6) cells-1 or 62 ng min-1 mg-1 chlorophyll) is up to 20-fold greater than that of fully copper-supplemented cells, and the Km (approximately 2 x 10(2) nM) is unaffected. Thus, the same uptake system appears to operate in both copper-replete and copper-deficient cells, but its expression or activity must be induced under copper-deficient conditions. A cupric reductase activity is also increased in copper-deficient compared with copper-sufficient cells. The physiological characteristics of the regulation of this cupric reductase are compatible with its involvement in the uptake pathway. Despite the operation of the uptake pathway under both copper-replete and copper-deficient conditions, C. reinhardtii cells maintained in fully copper-supplemented cells do not accumulate copper in excess of their metabolic need. These results provide evidence for a homeostatic mechanism for copper metabolism in C. reinhardtii.  相似文献   

17.
Copper binding reducing activities of cell wall materials (CWM) prepared from cells of the yeast Debaryomyces hamsenii were examined. When CWM was treated with copper sulfate (0.1 mM CuSO4), the copper was partially reduced from Cu (II) to Cu (I) and bound to CWM (below 10 nmol per mg dry wt.). The bound copper was mostly in the fraction of mannan-protein. Both copper-binding ability and protein content decreased with protease treatments. Mannan-protein prepared from CWM bound more copper than mannan did. This suggests that Cu (II) bound to the protein portion in CWM and was reduced to Cu (I). The optimum pH of copper reduction by CWM was about 5.0. The amount of copper bound to CWM increased with reducing agents and decreased with oxidizing agents. On the other hand, the copper uptake by yeast whole cells and spheroplasts was also stimulated by reducing agents, but inhibited by oxidizing agents. Furthermore, copper uptake by spheroplasts was stimulated in the presence of CWM. The optimum pH of copper uptake coincided with that of copper reducing activity. These results suggest that yeast cell wall not only supplies copper binding but also reduces copper, and the reduced copper is transported into yeast cells. The yeast cells may have copper-reducing proteins in the cell wall.  相似文献   

18.
Previous studies have implicated copper proteins, including ceruloplasmin, in intestinal iron transport. Polarized Caco2 cells with tight junctions were used to examine the possibilities that (a) ceruloplasmin promotes iron absorption by enhancing release at the basolateral cell surface and (b) copper deficiency reduces intestinal iron transport. Iron uptake and overall transport were followed for 90 min with 1 &mgr;M 59Fe(II) applied to the apical surface of Caco2 cell monolayers. Apotransferrin (38 &mgr;M) was in the basolateral chamber. Induction of iron deficiency with desferrioxamine (100 &mgr;M; 18 h) markedly increased uptake and overall transport of iron. Uptake increased from about 20% to about 65% of dose, and overall 59Fe transport from <1% to 60% of dose. On the basis of actual iron released into the basal chamber (measured with bathophenanthroline), transport increased 8-fold. Desferrioxamine pretreatment reduced cellular Fe by 55%. The addition of freshly isolated, enzymatically active human ceruloplasmin to the basolateral chamber during absorption had no effect on uptake or transport of iron by the cells. Unexpectedly, pretreatment with three different chelators of copper (18 h), which reduced cellular levels about 40%, more than doubled iron uptake and raised overall transport to 20%. This was so, whether or not cells were also made iron deficient with desferrioxamine. Acute addition of 1 &mgr;M Cu(II) to the apical chamber had no significant effect upon iron uptake, retention, or transport in iron deficient or normal cells, in the presence of absence of ascorbate. We conclude that intestinal absorption of Fe(II) is unlikely to depend upon plasma ceruloplasmin, and that cuproproteins involved in this form of iron transport must be binding copper tightly.  相似文献   

19.
Relatively little is known about the individual steps in intestinal copper absorption and whether or how they may be regulated. Polarized Caco-2 cell monolayers with tight junctions offer an already tested model in which to study intestinal metal transport. This model was used to examine potential effects of cellular copper availability on copper absorption. Uptake and transport were determined on application of (64)Cu(II) to the brush border. In the range of 0.2-2 micro M, uptake was dose dependent and was approximately 20% of dose/90 min. Overall transport of (64)Cu across the basolateral surface was approximately 0.3%. When cellular copper levels were depleted 40% by 18-h pretreatment with the specific copper chelator triethylenetetraamine, uptake and overall transport were markedly increased, going to 80 and 65% of dose, respectively. Cellular retention of (64)Cu fell fourfold, from 6 to 1.5%. Depletion of copper with the chelator was rapid and preceded initial changes in uptake and overall transport by 4 h. A lesser depletion of cellular copper (13%) failed to enhance copper uptake but doubled the rate of overall transport, as measured with (64)Cu and by atomic absorption. As previously reported, preexposure of the cells to excess copper (10 micro M, 18 h) also enhanced copper uptake ( approximately 3-fold). In contrast, ascorbate (10-1,000 micro M) failed to significantly alter uptake and transport of 1 micro M (64)Cu. Our findings are consistent with the concepts that, in the low physiological range, copper availability alters the absorption capacity of the intestine to support whole body homeostasis and that basolateral transport is more sensitively regulated than uptake.  相似文献   

20.
Proteins on the cellular surface of a bacterium, its surfaceome, are part of the interface between the bacterium and its environment, and are essential for the cells response to its habitat. Methylococcus capsulatus Bath is one of the most extensively studied methane-oxidizers and is considered as a model-methanotroph. The composition of proteins of the surfaceome of M. capsulatus Bath varies with the availability of copper and changes significantly upon only minor changes of copper concentration in the sub-μM concentration range. Proteins that respond to the changes in copper availability include the assumed copper acquisition protein MopE, c-type heme proteins (SACCP, cytochrome c(553o) proteins) and several proteins of unknown function. The most intriguing observation is that multi-heme c-type cytochromes are major constituents of the M. capsulatus Bath surfaceome. This is not commonly observed in bacteria, but is a feature shared with the dissimilatory metal-reducing bacteria. Their presence on the M. capsulatus Bath cellular surface may be linked to the cells ability to efficiently adapt to changing growth conditions and environmental challenges. However, their possible role(s) in methane oxidation, nitrogen metabolism, copper acquisition, redox-reactions and/or electron transport remain(s) at present an open question. This review will discuss the possible significance of these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号