首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.

Background

The understanding of bicarbonate kinetics and CO2 retention in the body is necessary to conduct amino acid tracer oxidation studies in both humans and laboratory animals. Significant metabolic activity is associated with eating which can affect bicarbonate steady state kinetics. A study was conducted to assess the impact of feeding regimen on the recovery of labelled bicarbonate and energy expenditure in adult female pigs (sows). Five catheterized sows (235 ± 5 kg) were fed semi-synthetic diets as: a single meal 2 h into the infusion after an overnight fast, or in eight hourly meals starting 2 h before the infusion. Oxygen consumption, CO2 production and 14CO2 recovery (ie fraction not retained) were determined during primed, constant intravenous infusions of NaH14CO3.

Results

The 14CO2 recovery (%) after fasting (58.1 ± 4.8) was lower than that after single meal feeding (78.8 ± 5.9) or hourly meal feeding (81.0 ± 2.6, P = 0.03). CO2 production correlated with 14CO2 recovery during hourly feeding (r = 0.40, P = 0.01); this relationship was not significant after single meal feeding (P = 0.30), probably due to physical activity-associated CO2 production.

Conclusions

The correlation of CO2 retention factors with CO2 production during hourly feeding suggests that this regimen should be preferred for future amino acid kinetics studies.
  相似文献   

2.
Brain cortex slices from fed, 48 h and 120 h fasted rats were incubated and 14CO2 was measured from (a) [U-14C]glucose (5 mm ) either alone or in the presence of l -lcucine (0.1 or 1 mm ), and (b) [U-14C]leucine or [l-14C]leucine at 0.1 or 1 mm with or without glucose (5 mm ). In other experiments, sodium dl -3-hydroxybutyrate (3-OHB) or acetoacetate (AcAc) at 1 or 5 mm were added in the above incubation mixture. The rate of conversion of [U14C]glucose to CO2 was decreased 20% by leucine at 1 mm and 30–50% by 3-OHB at 1 or 5 mm but not by leucine at 0.1 mm . The effects of 3-OHB and of leucine (1 mm ) were not additive. The effects of leucine were similar in the fed and fasted rats. The rate of conversion of [U-14C]leucine or [l-,4C]leucine to 14CO2 at 0.1 mm and 1.0 mm was increased by glucose (35%) in the fed or fasted rats. Ketone bodies in the absence of glucose had no effect on leucine oxidation. However, the stimulatory effect of glucose on the rate of conversion of leucine to CO2 was inhibited by 3-OHB at 5 mm . These results suggest that (a) leucine in increased concentrations (1 mm ) may reduce glucose oxidation by brain cortex while itself becoming an oxidative fuel for brain, and (b) leucine oxidation by brain may be influenced by the prevailing glucose and ketone concentrations.  相似文献   

3.
Resting skeletal muscle has a preference for the oxidation of lipids compared to carbohydrates and a shift towards carbohydrate oxidation is observed with increasing exercise. Lactate is not only an end product in skeletal muscle but also an important metabolic intermediate for mitochondrial oxidation. Recent advances in hyperpolarized MRS allow the measurement of substrate metabolism in vivo in real time. The aim of this study was to investigate the use of hyperpolarized 13C lactate as a substrate for metabolic studies in skeletal muscle in vivo. Carbohydrate metabolism in healthy rat skeletal muscle at rest was studied in different nutritional states using hyperpolarized [1-13C]lactate, a substrate that can be injected at physiological concentrations and leaves other oxidative processes undisturbed. 13C label incorporation from lactate into bicarbonate in fed animals was observed within seconds but was absent after an overnight fast, representing inhibition of the metabolic flux through pyruvate dehydrogenase (PDH). A significant decrease in 13C labeling of alanine was observed comparing the fed and fasted group, and was attributed to a change in cellular alanine concentration and not a decrease in enzymatic flux through alanine transaminase. We conclude that hyperpolarized [1-13C]lactate can be used to study carbohydrate oxidation in resting skeletal muscle at physiological levels. The herein proposed method allows probing simultaneously both PDH activity and variations in alanine tissue concentration, which are associated with metabolic dysfunctions. A simple alteration of the nutritional state demonstrated that the observed pyruvate, alanine, and bicarbonate signals are indeed sensitive markers to probe metabolic changes in vivo.  相似文献   

4.
We investigated the fate of carbon dioxide (CO2) absorbed by roots or internally produced by respiration using gas exchange and stable isotopic labeling. CO2 efflux from detached leaves supplied with bicarbonate/CO2 solutions was followed over six cycles. CO2 effluxes were detected when bicarbonate solution at high pH was used, corresponding to 71–85% of the expected efflux. No CO2 efflux was detected when CO2 solutions at low pH were used but CO2 efflux was subsequently detected as soon as bicarbonate solutions at high pH were supplied. By sealing the leaf and petiole in a plastic bag to reduce diffusion to the atmosphere, a small CO2 efflux signal (14–30% of the expected efflux) was detected suggesting that CO2 in the xylem stream can readily escape to the atmosphere before reaching the leaf. When the root‐zones of intact plants were exposed to CO2 solutions, a significant efflux from leaf surface was observed (13% of the expected efflux). However, no signal was detected when roots were exposed to a high pH bicarbonate solution. Isotopic tracer experiments confirmed that CO2 supplied to the root‐zone was transported through the plant and was readily lost to the atmosphere. However, little 13C moved to the shoot when roots were exposed to bicarbonate solutions at pH 8, suggesting that bicarbonate does not pass into the xylem.  相似文献   

5.
—It is generally believed that leucine serves primarily as a precursor for protein synthesis in the central nervous system. However, leucine is also oxidized to CO2 in brain. The present investigation compares leucine oxidation and incorporation into protein in brain slices and synaptosomes. In brain slices from adult rats, these processes were linear for 90min and 14CO2 production from 0·1 mm -l -[l-14C]leucine was 23 times more rapid than incorporation into protein. The rate of oxidation increased further with greater leucine concentrations. Experiments with l -[U-14C]leucine suggested that all of the carbons from leucine were oxidized to CO2 with very little incorporation into lipid. Oxidation of leucine also occurred in synaptosomes. In slices, leucine oxidation and incorporation into protein were inhibited by removal of glucose or Na+, or addition of ouabain. In synaptosomes, replacement of Na+ by choline also reduced leucine oxidation; and this effect did not appear to be due to inhibition of leucine transport. The rate of leucine oxidation did not change in brain slices prepared from fasted animals. Fasting, however, reduced the incorporation of leucine into protein in brain slices prepared from young but not from adult rats. These findings indicate that oxidation is the major metabolic fate of leucine in brain of fed and fasted animals.  相似文献   

6.
Ecosystem tracer-level additions would benefit from a stable isotope-labeled source of complex organic molecules. We tested a method to label tree C with 13C and create a stable isotope tracer for stream dissolved organic carbon (DOC) using tulip poplar (Liriodendron tulipifera L.) seedlings. In 2000, seedlings were grown with 0.82 moles of 13CO2 to assess the distribution and level of 13C enrichment in the tree tissues. In 2001, seedlings were grown with 25 times more 13CO2 to generate tissues with a 13C signal strong enough for a 13C-DOC stream tracer addition. 13C enrichment in the trees varied in each year and by tissue age and type. Tissues formed during labeling (new) were more enriched in 13C than tissues established prior to the 13CO2 injection (old). Stems were most enriched in 13C in both new and old tissues. A higher percentage of 13CO2 was incorporated into seedlings in 2000 (59% ±1) than 2001 (43% ±0). Percent 13C incorporation among tree tissue types paralleled biomass distributions. Although tree C and 13C were equally soluble in both years, a greater percentage of tree C went into solution in 2001 (30%) than 2000 (20%). The water-soluble tree C accounted for approximately 12% of the injected 13CO2 and had both humic and polysaccharide components. Results from a whole-stream 13C-DOC tracer addition demonstrated that tree C could be sufficiently labeled with 13CO2 to create a stream DOC isotope tracer with some polymeric constituents.  相似文献   

7.
Most fasting animals are believed to sequentially switch from predominantly utilizing one metabolic substrate to another from carbohydrates, to lipids, then to proteins. The timing of these physiological transitions has been estimated using measures of substrate oxidation including changes in respiratory exchange ratios, blood metabolites, nitrogen excretion, or enzyme activities in tissues. Here, we demonstrate how 13CO2-breath testing can be used to partition among the oxidation of distinct nutrient pools in the body (i.e., carbohydrates, lipids, and proteins) that have become artificially enriched in 13C. Seventy-two Swiss Webster mice were raised to adulthood on diets supplemented with 13C-1-l-leucine, 13C-1-palmitic acid, 13C-1-d-glucose, or no tracer. Mice were then fasted for 72 h during which $ \dot{V}{\text{O}}_{2} $ , $ \dot{V}{\text{CO}}_{2} $ , δ13C of exhaled CO2, body temperature, body mass, and blood metabolites (i.e., glucose, ketone bodies, and triacylglycerols) were measured. The fasting mice exhibited reductions in body mass (29 %), body temperature (3.3 °C), minimum observed metabolic rates (24 %), and respiratory exchange ratio (0.18), as well as significant changes in blood metabolites; but these responses were not particularly indicative of changes in oxidative fuel mixture. Measurements of endogenous nutrient oxidation by way of 13CO2-breath testing revealed a decrease in the rate of oxidation of carbohydrates from 61 to 10 % of the total energy expenditure during the first 6 h without food. This response was mirrored by a coincidental increase in rate of endogenous lipid oxidation from 18 to 64 %. A transient peak in carbohydrate oxidation occurred between 8 and 14 h, presumably during increased glycogen mobilization. A well-defined period of protein sparing between 8 and 12 h was observed where endogenous protein oxidation accounted for as little as 8 % of the total energy expenditure. Thereafter, protein oxidation continually increased accounting for as much as 24 % of the total energy expenditure by 72 h. This study demonstrates that 13CO2-breath testing may provide a complementary approach to characterizing the timing and magnitude of sequential changes in substrate oxidation that occur during prolonged fasting and starvation.  相似文献   

8.
Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA.  相似文献   

9.
Cellular metabolite analyses by 13C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2 aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly 13C-labelled acetate (13CH3-COOH or CH3-13COOH) supported that both the 13C nuclei give rise to bicarbonate and CO2 aq. The observed metabolite(s) upon further incubation led to the production of starch and triacylglycerol (TAG) in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2 aq in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2 aq, which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2 aq pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii.  相似文献   

10.
The pathway of methanol conversion by a thermophilic anaerobic consortium was elucidated by recording the fate of carbon in the presence and absence of bicarbonate and specific inhibitors. Results indicated that about 50% of methanol was directly converted to methane by the methylotrophic methanogens and 50% via the intermediates H2/CO2 and acetate. The deprivation of inorganic carbon species [(HCO3+CO2)] in a phosphate-buffered system reduced the rate of methanol conversion. This suggests that bicarbonate is required as an electron (H2) sink and as a co-substrate for the efficient and complete removal of the chemical oxygen demand. Nuclear magnetic resonance spectroscopy was used to investigate the route of methanol conversion to acetate in bicarbonate-sufficient and bicarbonate-depleted environments. The proportions of [1,2-13C]acetate, [1-13C]acetate and [2-13C]acetate were determined. Methanol was preferentially incorporated into the methyl group of acetate, whereas HCO3 was the preferred source of the carboxyl group. A small amount of the added H13CO3 was reduced to form the methyl group of acetate and a small amount of the added 13CH3OH was oxidised and found in the carboxyl group of acetate when 13CH3OH was converted. The recovery of [13C]carboxyl groups in acetate from 13CH3OH was enhanced in bicarbonate-deprived medium. The small amount of label incorporated in the carboxyl group of acetate when 13CH3OH was converted in the presence of bromoethanesulfonic acid indicates that methanol can be oxidised to CO2 prior to acetate formation. These results indicate that methanol is converted through a common pathway (acetyl-CoA), being on the one hand reduced to the methyl group of acetate and on the other hand oxidised to CO2, with CO2 being incorporated into the carboxyl group of acetate.  相似文献   

11.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   

12.
《Free radical research》2013,47(12):1431-1437
The carbonate radical anion CO3?? is a potent reactive oxygen species (ROS) produced in vivo through enzymatic one-electron oxidation of bicarbonate or, mostly, via the reaction of CO2 with peroxynitrite. Due to the vitally essential role of the carbon dioxide/bicarbonate buffer system in regulation of physiological pH, CO3?? is arguably one of the most important ROS in biological systems. So far, the studies of reactions of CO3?? with DNA have been focused on the pathways initiated by oxidation of guanines in DNA. In this study, low-molecular products of attack of CO3?? on the sugar–phosphate backbone in vitro were analyzed by reversed phase HPLC. The selectivity of damage in double-stranded DNA (dsDNA) was found to follow the same pattern C4′ > C1′ > C5′ for both CO3?? and the hydroxyl radical, though the relative contribution of the C1′ damage induced by CO3?? is substantially higher. In single-stranded DNA (ssDNA) oxidation at C1′ by CO3?? prevails over all other sugar damages. An approximately 2000-fold preference for 8-oxoguanine (8oxoG) formation over sugar damage found in our study identifies CO3?? primarily as a one-electron oxidant with fairly low reactivity toward the sugar–phosphate backbone.  相似文献   

13.
The effects of dietary protein contents and regular exercise on the oxidation of supplemented leucine were examined. In the short-term study, male BALB/cCrSlc mice were fed diets containing 0, 10, 20, 35, and 60% protein: energy ratios for 1 week. In the long-term study, exercised and sedentary mice were fed diets containing 20, 35, and 60% protein ratios for 9 weeks. After the feeding periods, the mice were a bolus administered oral supplements of l-[1-13C] leucine. Expired gas was analyzed, and oxidized leucine was expressed as a relative 13CO2/12CO2 ratio. In the short-term study, the peak 13CO2/12CO2 ratio significantly increased with diet protein concentrations. Moreover, the long-term study also showed that the peak 13CO2/12CO2 ratio was significantly increased by high protein diets in both exercised and sedentary mice. Our results indicate that supplemental leucine oxidation is associated with consumption of a high-protein diet, irrespective of exercise status.

Abbreviations: AUC: area under the curve; EX: exercise; RQ: respiratory quotient; SED: sedentary; VO2/W: oxygen uptake per body weight  相似文献   


14.
The effects of norepinephrine on ketogenesis in isolated hepatocytes have been reported as ranging from stimulation to inhibition. The present work was planned with the aim of clarifying these discrepancies. The experimental system was the once-through perfused liver from fasted and fed rats. Fatty acids with chain lengths varying from 8-18 were infused. The effects of norepinephrine depended on the metabolic state of the rat and on the nature of the fatty acid. Norepinephrine clearly inhibited ketogenesis from long-chain fatty acids (stearate > palmitate > oleate), but had little effect on ketogenesis from medium-chain fatty acids (octanoate and laureate). With palmitate the decrease in oxygen uptake was restricted to the substrate stimulated portion; with stearate, the decrease exceeded the substrate stimulated portion; with oleate, oxygen uptake was transiently inhibited. Withdrawal of Ca2+ attenuated the inhibitory effects. 14CO2 production from [1-14C]oleate was inhibited. Net uptake of the fatty acids was not affected by norepinephrine. In livers from fed rats, oxygen uptake and ketogenesis from stearate were only transiently inhibited. The conclusions are: (a) in the fasted state norepinephrine reduces ketogenesis and respiration by means of a Ca2+-dependent mechanism; (b) the degree of inhibition varies with the chain length and the degree of saturation of the fatty acids; (c) norepinephrine favours esterification of the activated long-chain fatty acids in detriment to oxidation; (d) in the fed state the stimulatory action of norepinephrine on glycogen catabolism induces conditions which are able to reverse inhibition of ketogenesis and oxygen uptake.  相似文献   

15.
To estimate the degree of recycling of pyruvate during gluconeogenesis, an isotope tracer procedure was employed. Using the isolated, perfused rat liver with pyruvate-2-14C in the perfusion fluid, the 3-carbon acids lactate and pyruvate were isolated and the distribution of 14C in each carbon was assayed. It can be shown that the degree of recycling can be approximated as twice the sum of 14C in carbons 1 and 3. Glucose, acetoacetate, and β-hydroxybutyrate were also determined, and their 14C distribution estimated by appropriate degradation procedures. In livers from fasted rats, recycling of pyruvate during 1 hr incubation occurred at a rate of 0.21 μmoles ± 0.02 (SE)/min/g while gluconeogenesis occurred at a rate of 0.49 ± 0.11 μmoles pyruvate-2-14C/min/g. In livers from carbohydrate-fed rats, the ratio was reversed, with 0.35 ± 0.06 μmoles pyruvate-2-14C recycled and only 0.09 ± 0.03 μmoles converted to glucose. These patterns were not affected by the simultaneous presence of octanoate in the perfusion, during which ketone body production was greatly increased. Only about 20% of the ketone bodies formed were derived from pyruvate, much less with octanoate present, and over 95% of the total radioactivity was in carbons 1 and 3 of acetoacetate as anticipated from the degree of pyruvate recycling. The glucose invariably had 3–4% of its total activity in carbons 3 and 4 and the remainder distributed approximately equally in carbons 1, 2, 5, and 6. The radioactivity in respired CO2 indicated that about 13–25% of the total O2 uptake was due to pyruvate oxidation to CO2.  相似文献   

16.
Isotope discrimination is a common feature of biosynthesis in nature, with the result that different classes of carbon compounds frequently display different 13C/12C ratios. The 13C/12C ratio of lipid in potato tuber tissue is considerably lower than that for starch or protein. We have collected respiratory CO2 from potato discs in successive periods through 24 hr from the time of cutting—an interval in which the respiration rate rises 3–5-fold. The 13C/12C ratio of the evolved CO2 was determined for each period, and compared with the 13C/12C ratios of the major tissue metabolites. In the first hours the carbon isotope ratio of the CO2 matches that of lipid. With time, the ratio approaches that typical of starch or protein. An estimation has been made of the contribution of lipid and carbohydrate to the total respiration at each juncture. In connection with additional observations, it was deduced that the basal, or initial, respiration represents lipid metabolism—possibly the α-oxidation of long chain fatty acids—while the developed repiration represents conventional tricarboxylic acid cycle oxidation of the products of carbohydrate glycolysis. The true isotopic composition of the respiratory CO2 may be obscured by fractionation attending the refixation of CO2 during respiration, and by CO2 arising from dissolved CO2 and bicarbonate preexisting in the tuber. Means are described for coping with both pitfalls.  相似文献   

17.
Computational models based on the metabolism of stable isotope tracers can yield valuable insight into the metabolic basis of disease. The complexity of these models is limited by the number of tracers and the ability to characterize tracer labeling in downstream metabolites. NMR spectroscopy is ideal for multiple tracer experiments since it precisely detects the position of tracer nuclei in molecules, but it lacks sensitivity for detecting low-concentration metabolites. GC-MS detects stable isotope mass enrichment in low-concentration metabolites, but lacks nuclei and positional specificity. We performed liver perfusions and in vivo infusions of 2H and 13C tracers, yielding complex glucose isotopomers that were assigned by NMR and fit to a newly developed metabolic model. Fluxes regressed from 2H and 13C NMR positional isotopomer enrichments served to validate GC-MS-based flux estimates obtained from the same experimental samples. NMR-derived fluxes were largely recapitulated by modeling the mass isotopomer distributions of six glucose fragment ions measured by GC-MS. Modest differences related to limited fragmentation coverage of glucose C1–C3 were identified, but fluxes such as gluconeogenesis, glycogenolysis, cataplerosis and TCA cycle flux were tightly correlated between the methods. Most importantly, modeling of GC-MS data could assign fluxes in primary mouse hepatocytes, an experiment that is impractical by 2H or 13C NMR.  相似文献   

18.
Chylomicrons labeled in vivo with 14C-oleic acid (primarily in triglycerides, providing a tracer for lipolysis) and 3H-retinol (primarily in ester form, providing a tracer for the core lipids) were injected into rats. Radioactivity in tissues was followed at a series of times up to 40 min and the data were analyzed by compartmental modeling. For heart-like tissues it was necessary to allow the chylomicrons to enter into a compartment where lipolysis is rapid and then transfer to a second compartment where lipolysis is slower. The particles remained in these compartments for minutes and when they returned to blood they had reduced affinity for binding in the tissue. In contrast, the data for liver could readily be fitted with a single compartment for native and lipolyzed chylomicrons in blood, and there was no need for a pathway back to blood. A composite model was built from the individual tissue models. This whole-body model could simultaneously fit all data for both fed and fasted rats and allowed estimation of fluxes and residence times in the four compartments; native and lipolyzed chylomicrons (“remnants”) in blood, and particles in the tissue compartments where lipolysis is rapid and slow, respectively.  相似文献   

19.
Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.  相似文献   

20.
Photosynthesis controls of CO2 efflux from maize rhizosphere   总被引:4,自引:0,他引:4  
The effects of different shading periods of maize plants on rhizosphere respiration and soil organic matter decomposition were investigated by using a 13C natural abundance and 14C pulse labeling simultaneously. 13C was a tracer for total C assimilated by maize during the whole growth period, and 14C was a tracer for recently assimilated C. CO2 efflux from bare soil was 4 times less than the total CO2 efflux from planted soil under normal lighting. Comparing to the normal lighting control (12/12 h day/night), eight days with reduced photosynthesis (12/36 h day/night period) and strongly reduced photosynthesis (12/84 h day/night period) resulted in 39% and 68% decrease of the total CO2 efflux from soil, respectively. The analysis of 13C natural abundance showed that root-derived CO2 efflux accounted for 82%, 68% and 56% of total CO2 efflux from the planted soil with normal, prolonged and strongly prolonged night periods, respectively. Clear diurnal dynamics of the total CO2 efflux from soil with normal day-night period as well as its strong reduction by prolonged night period indicated tight coupling with plant photosynthetic activity. The light-on events after prolonged dark periods led to increases of root-derived and therefore of total CO2 efflux from soil. Any factor affecting photosynthesis, or substrate supply to roots and rhizosphere microorganisms, is an important determinant of root-derived CO2 efflux, and thereby, total CO2 efflux from soils. 14C labeling of plants before the first light treatment did not show any significant differences in the 14CO2 respired in the rhizosphere between different dark periods because the assimilate level in the plants was high. Second labeling, conducted after prolonged night phases, showed higher contribution of recently assimilated C (14C) to the root-derived CO2 efflux by shaded plants. Results from 13C natural abundance showed that the cultivation of maize on Chromic Luvisol decreased soil organic matter (SOM) mineralization compared to unplanted soil (negative priming effect). A more important finding is the observed tight coupling of the negative rhizosphere effect on SOM decomposition with photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号