首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate the effect of large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activase (RuBPCO-A) on photosynthesis, cDNA of the enzyme (rca) was transferred to rice cultivars (Oryza sativa f. japonica cv. Nipponbare) under the control of RuBPCO small subunit gene promoter (rbcS) via Agrobacterium tumefaciens-mediated transformation. Transgenic rice plants were identified by polymerase chain reaction (PCR) and Southern and Western blot analyses. Net photosynthetic rate (P N) values of the T1 transgenic lines 34 (T34) and 40 (T40) were 45.26 and 46.32 % higher than that of the control plants, respectively. At the same time, their carboxylation efficiency and RuBPCO initial activity, quantum yield of electron transport in photosystem 2 (ΦPS2), and steady state photochemical fluorescence quenching (qP) increased. In addition, heading time of the transgenic rice was advanced. Thus increasing the amount of large isoform of RuBPCO-A in the transgenic rice might have a stimulatory effect on both photosynthesis and plant growth.  相似文献   

2.
The potato upreg1, which encodes a mutated ADP-glucose pyrophosphorylase (AGPase) large subunit, was introduced into rice to evaluate its potential to enhance sink-driven yield productivity in this crop. We also wished to elucidate the activities of the up-regulated allosteric variants of potato AGPase large subunit gene in rice. A T-DNA vector containing the upreg1 gene under the control of the rice glutelin promoter was constructed with a MAR sequence and transformed into rice using Agrobacterium-mediated transformation. Transgenic plants were selected on medium supplemented with phosphinothricin and confirmed by the application of herbicide. A total of 38 transgenic plants were subsequently obtained in which the integration upreg1 into the rice genome was confirmed by Southern blotting. The exogenous AGPase in transgenic rice plants showed a high affinity for 3-phosphoglycerate activator and a low affinity for the orthophosphate inhibitor, as observed in lettuce. The transgenic rice also showed increases in the number of grains per particle, the number of panicles per plant, and also in the fresh weight of the above-ground mass of plant which was about 15% higher than non-transgenic ‘Nak-dong’. The number of seeds per tiller was also found to be about 10% higher in the transgenic plants. However, the net photosynthesis rate showed very little difference in the transgenic rice, and we could not therefore confirm any linkage with the deregulation of allosteric effects. Based on these results, upreg1 mutant genes can be used for the genetic improvement of plant AGPases other than potato and to effectively increase crop yield productivity.  相似文献   

3.
4.
In comparison with its wild type (WT), the transgenic (TG) rice with silenced OsBP-73 gene had significantly lower plant height, grain number per panicle, and leaf net photosynthetic rate (P N). Also, the TG rice showed significantly lower chlorophyll (Chl), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), RuBPCO activase, and RuBP contents, photosystem 2 (PS2) photochemical efficiency (Fv/Fm and ΔF/Fm′), apparent quantum yield of carbon assimilation (Φc), carboxylation efficiency (CE), photosynthetic electron transport and photophosphorylation rates as well as sucrose phosphate synthase activity, but higher intercellular CO2 concentration, sucrose, fructose, and glycerate 3-phosphate contents, and non-photochemical quenching of Chl fluorescence (NPQ). Thus the decreased P N in the TG rice leaves is related to both RuBP carboxylation and RuBP regeneration limitations, and the latter is a predominant limitation to photosynthesis.  相似文献   

5.
Activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) is an important parameter determining the rate of net photosynthesis (P N) in situ for which no information is available with reference to altitude. We analyzed activation state along with P N in three plant species and their cultivars grown at low (LA, 1 300 m) and high (HA, 4 200 m) altitudes. No significant change in P N and the initial activity of RuBPCO was obtained with reference to altitude. However, activation state of RuBPCO was reduced significantly in the HA plants as compared to the LA ones. Hence low partial pressure of CO2 prevailing at HA might be responsible for the lower activation state of RuBPCO.  相似文献   

6.
Oscillations in many of photosynthetic quantities with a period of about 1 min can be routinely measured with higher plant leaves after perturbation of the steady state by sudden change in gas phase. Among all hypotheses suggested so far to explain the oscillations, an effect of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activation status to control the oscillations is highly probable, at least upon high temperature (HT) treatment when in vivo RuBPCO activity controlled by RuBPCO activase (RuBPCO-A) decreases. Therefore, we measured the oscillations in fluorescence signal coming from barley leaves (Hordeum vulgare L. cv. Akcent) after their exposure for various time intervals to different HTs in darkness. We also evaluated steady state fluorescence and CO2 exchange parameters to have an insight to functions of electron transport chain within thylakoid membrane and Calvin cycle before initiation of the oscillations. The changes in period of the oscillations induced by moderate HT (up to 43 °C) best correlated with changes in non-photochemical fluorescence quenching (qN) that in turn correlated with changes in gross photosynthetic rate (P G) and rate of RuBPCO activation (kact). Therefore, we suggest that changes in period of the oscillations caused by moderate HT are mainly controlled by RuBPCO activation status. For more severe HT (45 °C), the oscillations disappeared which was probably caused by an insufficient formation of NADPH by electron transport chain within thylakoid membrane as judged from a decrease in photochemical fluorescence quenching (qP). Suggestions made on the basis of experimental data were verified by theoretical simulations of the oscillations based on a model of Calvin cycle and by means of a control analysis of the model.  相似文献   

7.
The effects of nitrogen (N) supply restriction on the CO2 assimilation and photosystem 2 (PS2) function of flag leaves were compared between two contrastive Japanese rice cultivars, a low-yield cultivar released one century ago, cv. Shirobeniya (SRB), and a recently improved high-yield cultivar, cv. Akenohoshi (AKN). Both cultivars were solution-cultured at four N supply levels from N4 (control) to N1 (the lowest). With a reduction in N-supply, contents of N (LNC), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and chlorophyll (Chl) in flag leaves decreased in both cultivars. In parallel with this, the net photosynthetic rate (P N), mesophyll conductance (g m), and stomatal conductance (g s) decreased. P N was more dominantly restricted by g m than g s. The values of P N, g m, and RuBPCO content were larger in AKN than SRB at the four N supply levels. The content of Chl greatly decreased with N deficiency, but the reduction in the maximum quantum yield of PS2 was relatively small. Quantum yield of PS2 (ΦPS2) decreased with N deficiency, and its significant cultivar difference was observed between the two cultivars at N1: a high value was found in AKN. The content ratio of Chl/RuBPCO was also significantly low in AKN. The low Chl/RuBPCO is one of the reasons why AKN maintained a comparatively high P N and ΦPS2 at N deficiency. The adequate ratio of N distribution between Chl and RuBPCO is the important prerequisite for the efficient and sustainable photosynthesis in a flag leaf of rice plant under low N-input.  相似文献   

8.
The ribulose 1,5-bisphosphate activity and its relative content in pea (Pisum sativum L., cv. Bordi) seedlings grown either under white or red light were investigated. Plants grown under red light had a lower ribulose 1,5- bisphosphate carboxylase (RuBPCO) activity as compared to plants grown under white light, if expressed on a fresh mass. These activities were very similar under both lights, as calculated on protein basis, although the relative content of RuBPCO was higher in the red one. The activity of RuBPCO under red light corresponds to the lower rate of net photosynthesis. The results are discussed in respect to possible presence of RuBPCO inhibitor in pea plants growth under red light.  相似文献   

9.
Detached leaves of white clover (Trifolium repens L.) were keptfor 1 h under various conditions of temperature, oxygen concentrationand light intensity. Rates of photosynthesis were measured whereappropriate and then ribulosebisphosphate carboxylase oxygenase(RuBPCO) was extracted rapidly and its initial activity measuredimmediately. The extracted activity increased with increased intensity ofillumination of the leaves. Where leaves were pretreated atlow light intensity, the lower the temperature of the leavesthe higher the extracted activity of RuBPCO. At high light intensitytemperature did not affect the activity of subsequently extractedRuBPCO but the light intensity which was necessary for maximumactivity increased with temperature. Activity of RuBPCO fromleaves pretreated in the dark was least when CO2 was low andtemperature high. Leaves, pretreated at low temperatures andhigh light intensity in 20% O2, yielded higher activity in extractsthan leaves pretreated under similar conditions but in 2% O2.A relatively weak temperature response of photosynthesis atlow irradiances was associated with a decrease in extractableRuBPCO activity with increasing temperature. A strong temperaturedependence of the oxygen inhibition of photosynthesis was associatedwith lower extractable RuBPCO activity in leaves pretreatedat low oxygen concentration at low temperatures. With leavesfrom plants grown at low temperatures prior to treatment ofleaves, oxygen inhibition of photosynthesis was less temperaturedependent and activity of RuBPCO in extracts was not decreasedby low O2 at low temperatures. Differences in the activationof RuBPCO appear to influence photosynthesis and account foran absence of oxygen inhibition of photosynthesis at low temperaturesin plants grown in warm conditions. Key words: Ribulosebisphosphate carboxylase oxygenase activation, Photosynthesis, Temperature, O2 effect, White clover  相似文献   

10.
The effect of drought stress (DS) on photosynthesis and photosynthesis-related enzyme activities was investigated in F. pringlei (C3), F. floridana (C3–C4), F. brownii (C4-like), and F. trinervia (C4) species. Stomatal closure was observed in all species, probably being the main cause for the decline in photosynthesis in the C3 species under ambient conditions. In vitro ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and stromal fructose 1,6-bisphosphatase (sFBP) activities were sufficient to interpret the net photosynthetic rates (P N), but, from the decreases in P N values under high CO2 (C a = 700 μmol mol− 1) it is concluded that a decrease in the in vivo rate of the RuBPCO reaction may be an additional limiting factor under DS in the C3 species. The observed decline in the photosynthesis capacity of the C3–C4 species is suggested to be associated both to in vivo decreases of RuBPCO activity and of the RuBP regeneration rate. The decline of the maximum P N observed in the C4-like species under DS was probably attributed to a decrease in maximum RuBPCO activity and/or to decrease of enzyme substrate (RuBP or PEP) regeneration rates. In the C4 species, the decline of both in vivo photosynthesis and photosynthetic capacity could be due to in vivo inhibition of the phosphoenolpyruvate carboxylase (PEPC) by a twofold increase of the malate concentration observed in mesophyll cell extracts from DS plants.  相似文献   

11.
12.
Plant growth, chlorophyll (Chl) content, photosynthetic gas exchange, ribulose-1,5-bisphosphate carboxylase (RuBPCO) enzyme activity, and Chl fluorescence in radish (Raphanus sativus var. longipinnatus) plants were examined after turnip mosaic virus (TuMV) infection. Plant fresh mass, dry mass, Chl content, net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and RuBPCO activity were significantly lower in infected plants after 5 weeks of virus infection as compared to healthy plants. The 5-week virus infection did not induce significant differences in intercellular CO2 concentration (C i, photochemical efficiency of photosystem 2, PS2 (Fv/Fm), excitation capture efficiency of open PS2 reaction centres (Fv'/Fm'), effective quantum efficiency of photosystem 2 (ΔF/Fm'), and photochemical quenching (qP), but non-photochemical quenching (qN) and alternative electron sink (AES) were significantly enhanced. Thus the decreased plant biomass of TuMV-infected plants might be associated with the decreased photosynthetic activity mainly due to reduced RuBPCO activity.  相似文献   

13.
The mechanism of the fact that cerium improves the photosynthesis of plants under magnesium deficiency is poorly understood. The main aim of the study was to determine the role of cerium in the amelioration of magnesium deficiency effects in CO2 assimilation of spinach. Spinach plants were cultivated in Hoagland’s solution. They were subjected to magnesium deficiency and to cerium chloride administered in the magnesium-present Hoagland’s media and magnesium-deficient Hoagland’s media. The results showed that the chlorophyll synthesis and oxygen evolution was destroyed, and the activities of Rubisco carboxylasae and Rubisco activase and the expression of Rubisco large subunit (rbcL), Rubisco small subunit (rbcS), and Rubisco activase subunit (rca) were significantly inhibited, then plant growth was inhibited by magnesium deficiency. However, cerium promotes the chlorophyll synthesis, the activities of two key enzymes in CO2 assimilation, and the expression of rbcL, rbcS, and rca, thus leading to the enhancement of spinach growth under magnesium-deficient conditions.  相似文献   

14.
Effects of plant hormones indole-3-yl-acetic acid (IAA), gibberellic acid (GA), benzylaminopurine (BAP), abscisic acid (ABA) and ethrel (ETH) in 5 M concentration on gas exchange, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO, EC 4.1.1.39) activity, pigment content and yield in cotton (Gossypium hirsutum L. cv. H-777) under drought were studied. At reproductive stage (55 – 60 d after sowing) these hormones were sprayed on shoots one day prior to stress imposition by withholding irrigation. The soil moisture of control plants was kept at field capacity. Net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), carboxylation efficiency (CE), water use efficiency (WUE), RuBPCO activity, boll number per plant, seed number per plant and lint mass per plant significantly decreased at drought while chlorophyll (Chl) b content and flower number per plant increased. ABA and ETH significantly reduced gas exchange parameters, Chl a and Chl b content. Detrimental drought effect on PN, gs, E, CE, RuBPCO and lint mass per plant was significantly alleviated by BAP and also its effect on seed number and lint mass per plant was significantly alleviated with the ABA treatment.  相似文献   

15.
Limitation of photosynthesis and light activation of ribulose,1,5-bisphosphate carboxylase (RuBPCO) were examined in the 5thleaf of seedlings of red clover (Trifolium pratense L. cv. Renova)for 5 d following an increase in photosynthetic photon fluxdensity (PPFD) from 200 to 550µmol quanta m–2 s–1.Net photosynthesis and its stimulation at 2.0 kPa O2 initialactivity of rapidly extracted RuBPCO, standard activity of RuBPCOafter incubation of the extracts in the presence of CO2, Mg2+,and inorganic phosphate and contents of soluble protein, starch,soluble sugars, and various photosynthetic metabolites weredetermined. Photosynthesis decreased and starch content increased.No decrease in photosynthesis was found if, when PPFD was increased,all leaves except the investigated 5th leaf were removed, suggestingthat the decrease in photosynthesis was due to accumulated carbohydrates.The stimulation of photosynthesis at 2.0 kPa O2 did not decreaseand the ratio of the total foliar steady-state contents of triosephosphate to 3-phosphoglycerate increased suggesting that thedecrease in photosynthesis was not due to limiting inorganicphosphate in chloroplasts. Intercellular CO2 partial pressureand RuBP content were not decreased. Nevertheless, the ratioof photosynthesis to initial RuBPCO activity decreased, suggestingthat the catalysis per active RuBPCO site was decreased. Theincrease in PPFD in the growth cabinet and the PPFD at whichleaves were preconditioned for 1 h, affected not only initialactivity but also the standard activity of RuBPCO. The resultssuggest that a varying proportion of RuBPCO was bound to membranesand was contained in the insoluble fraction of the extracts.A comparison of photosynthesis with extracted RuBPCO activitysuggested that membrane bound RuBPCO did not contribute to photosyntheticCO2 fixation and that the binding and release to and from membranesmodulated actual RuBPCO activity in vivo. Key words: Photosynthesis, ribulose 1,5-bisphosphate carboxylase, starch  相似文献   

16.
Field bean plants were subjected to flooding stress for 7 days, during two stages of development: at the vegetative phase (4-week-old seedlings) and at the generative phase (8-week-old plants). The height of plants, total area of leaves, the number of undamaged leaves, dry plant matter, chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity, the maximum quantum yield of PS2 photochemistry (Fv/Fm ratio), the photosynthesis rate (P N) and stomatal conductance (g s) were determined. A strong reduction in stem elongation and leaf area as well as in dry matter production was observed as a result of flooding. The responses from vegetative plants were greater than in generative plants. Waterlogging decreased chlorophyll a and b in leaves, notably at the vegetative stage, and persisted after cessation of flooding. After flooding, photosynthesis was strongly reduced and positively correlated with decreased stomatal conductance. Damage to the photosynthetic apparatus resulted in a lower Fv/Fm especially in young seedlings. In vegetative plants Fv/Fm quickly returned to the control levels after the soil was drained. The results show that an excess of water in the soil limits growth and injures the photosynthetic apparatus in field beans, but that the extent of the injury is strongly age dependent.  相似文献   

17.
Rice yield is severely affected by high-salt concentration in the vicinity of the plant. In an effort to engineer rice for improved salt tolerance Agrobacterium-mediated transformation of rice cv. Binnatoa was accomplished with the Pennisetum glaucum vacuolar Na+/H+ antiporter gene (PgNHX1) under the constitutive CaMV35S promoter. For the molecular analysis of putative transgenic plants, PCR and RT-PCR were performed. Transgenic rice plants expressing PgNHX1 showed better physiological status and completed their life cycle by setting flowers and seeds in salt stress, while wild-type plants exhibited rapid chlorosis and growth inhibition. Moreover, transgenic rice plants produced higher grain yields than wild-type plants under salt stress. Assessment of the salinity tolerance of the transgenic plants at seedling and reproductive stages demonstrated the potential of PgNHX1 for imparting enhanced salt tolerance capabilities and improved yield.  相似文献   

18.
Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6/f complex between 10 and 100% of wild‐type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6/f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single‐leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6/f complex could be a potential target for enhancing photosynthetic capacity in higher plants.  相似文献   

19.
Differences in acclimation to elevated growth CO2 (700 μmol mol−1, EC) and elevated temperature (ambient +4 °C, ET) in successive leaves of wheat were investigated in field chambers. At a common measurement CO2, EC increased photosynthesis and the quantum yield of electron transport (Φ) early on in the growth of penultimate leaves, and later decreased them. In contrast, EC did not change photosynthesis, and increased Φ at later growth stages in the flag leaf. Contents of chlorophyll (Chl), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and total soluble protein were initially higher and subsequently lower in penultimate than flag leaves. EC decreased RuBPCO protein content relative to soluble protein and Chl contents throughout the development of penultimate leaves. On the other hand, EC initially increased the RuBPCO:Chl and Chl a/b ratios, but later decreased them in flag leaves. In the flag leaves but not in the penultimate leaves, ET initially decreased initial and specific RuBPCO activities at ambient CO2 (AC) and increased them at EC. Late in leaf growth, ET decreased Chl contents under AC in both kinds of leaves, and had no effect or a positive one under EC. Thus the differences between the two kinds of leaves were due to resource availability, and to EC-increased allocation of resources to photon harvesting in the penultimate leaves, but to increased allocation to carboxylation early on in growth, and to light harvesting subsequently, in the flag leaves.  相似文献   

20.
Wheat (Triticum aestivum L. cv. HD 2285) was grown in control (C) and heated (H) open top chambers (OTCs) for entire period of growth and development till maturity. The mean maximum temperature of the entire period was 3 °C higher in H-compared to C-OTCs. Net photosynthetic rate (P N) measured at different temperature (20–40 °C) of C-and H-grown plants showed greater sensitivity to high temperature in H-plants. P N measured at respective growth temperature was lower in H-compared to C-plants. The CO2 and irradiance response curves of photosynthesis also showed lesser response in H-compared to C-plants. The initial slope of P N versus internal CO2 concentration (P N/C i) curve was lower in H-than C-plants indicating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) limitation. In irradiance response curve, the plateau was lower in H-compared to C-plants which is interpreted as RuBPCO limitation. RuBPCO content in the leaves of C-and H-plants, however, was not significantly different. Ribulose-1,5-bisphosphate carboxylase (RuBPC) initial activity was lower in H-plants, whereas activity of fully activated enzyme was not affected, indicating a decrease in activation state of the enzyme. This was further substantiated by the observed decrease in RuBPCO activase activity in H-compared to C-plants. RuBPCO activase was thus sensitive even to moderate heat stress. The decrease in P N under moderate heat stress was mainly due to a decrease in activation state of RuBPCO catalysed by RuBPCO activase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号