首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endopalsmic reticulum (ER) is specialized organelle to maintain the integrity of secreted and membranous proteins. ER also senses so-called “ER stress”, which is a resulted from a various internal and external stresses, and triggers apoptosis when the diverse attempts to accommodate with the stress are in fail. The impairment these ER functions has been implicated in several human diseases, in which aberrant ER stress induced apoptosis is observed. We discuss about another disease model related with ER mediated apoptosis based on the recent studies about Synoviolin, an E3 ubiquitin ligase inherently utilized for ER associated degradation (ERAD). In addition to its canonical role in ERAD, Synoviolin targets tumor suppressor gene p53 for proteasomal degradation, suggesting the crosstalk between ERAD and p53 mediated apoptotic pathway under ER stress. Together with the anti-apoptotic property of Synoviolin previously elucidated by both in vitro and in vivo analyses, its new function in p53 regulation may provide a new insight into the pathomechanism of proliferative diseases such as cancer or rheumatoid arthritis.  相似文献   

2.
By suppressing neuronal apoptosis, Icariin is a potential therapeutic drug for neuronal degenerative diseases. The molecular mechanisms of Icariin anti-apoptotic functions are still largely unclear. In this report, we found that Icariin induces the expression of Synoviolin, an endoplasmic reticulum (ER)-anchoring E3 ubiquitin ligase that functions as a suppressor of ER stress-induced apoptosis. The nuclear factor erythroid 2-related factor 1 (NFE2L1) is responsible for Icariin-mediated Synoviolin gene expression. Mutation of the NFE2L1-binding sites in a distal region of the Synoviolin promoter abolished Icariin-induced Synoviolin promoter activity, and knockdown of NFE2L1 expression prevented Icariin-stimulated Synoviolin expression. More importantly, Icariin protected ER stress-induced apoptosis of PC12 cells in a Synoviolin-dependent manner. Therefore, our study reveals Icariin-induced Synoviolin expression through NFE2L1 as a previously unappreciated molecular mechanism underlying the neuronal protective function of Icariin.  相似文献   

3.
We introduce Synoviolin as a novel pathogenic factor in rheumatoid arthritis (RA). Experimental studies indicate that this endoplasmic reticulum (ER)-resident E3 ubiquitin ligase has important functions in the ER-associated degradation (ERAD) system, an essential system for ER homeostasis. Overexpression of Synoviolin in mice causes arthropathy with synovial hyperplasia, whereas heterozygous knockdown results in increased apoptosis of synovial cells and resistance to collagen-induced arthritis in mice. On the basis of these experimental data, we propose that excess elimination of unfolded proteins (that is, 'hyper-ERAD') by overexpression of Synoviolin triggers synovial cell overgrowth and hence a worsening of RA. Further analysis of the hyper-ERAD system may permit the complex pathomechanisms of RA to be uncovered.  相似文献   

4.
5.
E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline.  相似文献   

6.
The tumor suppressor p53 protein is tightly regulated by a ubiquitin-proteasomal degradation mechanism. Several E3 ubiquitin ligases, including MDM2 (mouse double minute 2), have been reported to play an essential role in the regulation of p53 stability. However, it remains unclear how the activity of these E3 ligases is regulated. Here, we show that the HECT-type E3 ligase Smurf1/2 (Smad ubiquitylation regulatory factor 1/2) promotes p53 degradation by enhancing the activity of the E3 ligase MDM2. We provide evidence that the role of Smurf1/2 on the p53 stability is not dependent on the E3 activity of Smurf1/2 but rather is dependent on the activity of MDM2. We find that Smurf1/2 stabilizes MDM2 by enhancing the heterodimerization of MDM2 with MDMX, during which Smurf1/2 interacts with MDM2 and MDMX. We finally provide evidence that Smurf1/2 regulates apoptosis through p53. To our knowledge, this is the first report to demonstrate that Smurf1/2 functions as a factor to stabilize MDM2 protein rather than as a direct E3 ligase in regulation of p53 degradation.  相似文献   

7.
During the early phase of infection, the E1B-55K protein of adenovirus type 5 (Ad5) counters the E1A-induced stabilization of p53, whereas in the late phase, E1B-55K modulates the preferential nucleocytoplasmic transport and translation of the late viral mRNAs. The mechanism(s) by which E1B-55K performs these functions has not yet been clearly elucidated. In this study, we have taken a proteomics-based approach to identify and characterize novel E1B-55K-associated proteins. A multiprotein E1B-55K-containing complex was immunopurified from Ad5-infected HeLa cells and found to contain E4-orf6, as well as several cellular factors previously implicated in the ubiquitin-proteasome-mediated destruction of proteins, including Cullin-5, Rbx1/ROC1/Hrt1, and Elongins B and C. We further demonstrate that a complex containing these as well as other proteins is capable of directing the polyubiquitination of p53 in vitro. These ubiquitin ligase components were found in a high-molecular-mass complex of 800 to 900 kDa. We propose that these newly identified binding partners (Cullin-5, Elongins B and C, and Rbx1) complex with E1B-55K and E4-orf6 during Ad infection to form part of an E3 ubiquitin ligase that targets specific protein substrates for degradation. We further suggest that E1B-55K functions as the principal substrate recognition component of this SCF-type ubiquitin ligase, whereas E4-orf6 may serve to nucleate the assembly of the complex. Lastly, we describe the identification and characterization of two novel E1B-55K interacting factors, importin-alpha 1 and pp32, that may also participate in the functions previously ascribed to E1B-55K and E4-orf6.  相似文献   

8.
Disruption of the gatekeeper p53 tumor suppressor is involved in various virus-associated tumorigeneses, with aberrant ubiquitination as the major cause of p53 abnormalities in virus-associated tumors. Of note, wild-type p53 is accumulated in Epstein-Barr virus (EBV)-associated tumors, especially in nasopharyngeal carcinoma (NPC). We have previously identified that p53 is accumulated and phosphorylated by EBV oncoprotein latent membrane protein 1 (LMP1) in NPC. Here, we further found that LMP1 promoted p53 accumulation via two distinct ubiquitin modifications. LMP1 promoted p53 stability and accumulation by suppressing K48-linked ubiquitination of p53 mediated by E3 ligase MDM2, which is associated with its phosphorylation at Ser20, while increasing the levels of total cellular ubiquitinated p53. LMP1 also induced K63-linked ubiquitination of p53 by interacting with tumor necrosis factor receptor-associated factor 2 (TRAF2), thus contributing to p53 accumulation. Furthermore, LMP1 rescued tumor cell apoptosis and cell cycle arrest mediated by K63-linked ubiquitination of p53. Collectively, these results demonstrate aberrant ubiquitin modifications of p53 and its biological functions by viral protein LMP1, which has broad implications to the pathogenesis of multiple EBV-associated tumors.  相似文献   

9.
10.
Small DNA tumor viruses typically encode proteins that either inactivate or degrade p53. Human adenoviruses encode products, including E4orf6 and E1B55K, that do both. Each independently binds to p53 and inhibits its ability to activate gene expression; however, in combination they induce p53 degradation by the ubiquitin pathway. We have shown previously that p53 degradation relies on interactions of E4orf6 with the cellular proteins Cul5, Rbx1, and elongins B and C to form an E3 ligase similar to the SCF and VBC complexes. Here we show that, like other elongin BC-interacting proteins, including elongin A, von Hippel-Lindau protein, and Muf1, the interaction of E4orf6 is mediated by the BC-box motif; however, E4orf6 uniquely utilizes two BC-box motifs for degradation of p53 and another target, Mre11. In addition, our data suggest that the interaction of E1B55K with E4orf6 depends on the ability of E4orf6 to form the E3 ligase complex and that such complex formation may be required for all E4orf6-E1B55K functions.  相似文献   

11.
12.
MDM2 plays a crucial role in negatively regulating the functions of tumor suppressor p53. Here we show that MDM2 can inhibit Axin-stimulated p53-dependent apoptosis by suppressing p53 phosphorylation at Ser 46 and apoptosis-related p53 transactivational activity. Interestingly, the ubiquitin E3 ligase activity of MDM2 is not required for this inhibitory effect. Mechanically, either wildtype MDM2 or its E3-dead mutant, disrupts the Axin-based HIPK2/p53 complex formation by blocking the binding of p53 and HIPK2 to Axin. MDM2Δp53, a deletion mutant that lacks p53 binding domain fails to exert the inhibitory effect, demonstrating that the interaction of MDM2 and p53, but not its E3 ligase activity toward p53 plays key role in suppressing Axin-stimulated p53 activation. Our results thus have revealed a novel aspect of the mechanism by which MDM2 regulates p53 activities.  相似文献   

13.
MDM2 is a major regulator of p53 by acting as a ubiquitin E3 ligase. The central acidic domain and C-terminal RING domain of MDM2 are both indispensable for ubiquitination of p53. Our previous study suggested that ATM phosphorylation of MDM2 near the C terminus inhibits RING domain oligomerization, resulting in p53 stabilization after DNA damage. We present here evidence that these modifications allosterically regulate the functions of both acidic domain and RING domain of MDM2. Using chemical cross-linking, we show that the MDM2 RING domain forms oligomers including dimer and higher-order complexes in vivo. RING domain dimerization efficiency is negatively regulated by upstream sequence. ATM-mediated phosphorylation of the upstream sequence further inhibits RING dimerization. Forced oligomerization of MDM2 partially overcomes the inhibitory effect of phosphorylation and stimulates p53 ubiquitination. Furthermore, the ability of MDM2 acidic domain to bind p53 core domain and induce p53 misfolding are also suppressed by the same C-terminal ATM sites after DNA damage. These results suggest that the acidic domain and RING domain of MDM2 are both allosterically coupled to the intervening ATM sites, which enables the same modification to regulate multiple MDM2 functions critical for p53 ubiquitination.  相似文献   

14.
Numerous proteins participate and actively contribute to the various cellular mechanisms, where several of them are crucial for regular metabolism, including survival. Thus, to maintain optimal cellular physiology, cells govern protein quality control functions with the assistance of comprehensive actions of molecular chaperones, the ubiquitin-proteasome system, and autophagy. In the ubiquitin-proteasome pathway, few quality control E3 ubiquitin ligases actively participate against misfolded protein aggregation generated via stress conditions. But how these quality control E3s active expression levels returned to basal levels when cells achieved re-establishment of proteostasis is still poorly understood. Our current study demonstrated that LRSAM1 E3 ubiquitin ligase promotes the proteasomal degradation of quality control E3 ubiquitin ligase E6-AP. We have observed the co-localization and recruitment of LRSAM1 with E6-AP protein and noticed that LRSAM1 induces the endogenous turnover of E6-AP. Partial depletion of LRSAM1 elevates the levels of E6-AP and affects overall cell cycle regulatory proteins (p53 and p27) expression, including the rate of cellular proliferation. The current finding also provides an excellent opportunity to better understand the basis of the E6-AP associated pathomechanism of Angelman Syndrome disorder. Additionally, this study touches upon the novel potential molecular strategy to regulate the levels of one quality control E3 ubiquitin ligase with another E3 ubiquitin ligase and restore proteostasis and provide a possible therapeutic approach against abnormal protein aggregation diseases.  相似文献   

15.
16.
17.
The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes.  相似文献   

18.
19.
20.
The telomere-capping complex shelterin protects functional telomeres and prevents the initiation of unwanted DNA-damage-response pathways. At the end of cellular replicative lifespan, uncapped telomeres lose this protective mechanism and DNA-damage signalling pathways are triggered that activate p53 and thereby induce replicative senescence. Here, we identify a signalling pathway involving p53, Siah1 (a p53-inducible E3 ubiquitin ligase) and TRF2 (telomere repeat binding factor 2; a component of the shelterin complex). Endogenous Siah1 and TRF2 were upregulated and downregulated, respectively, during replicative senescence with activated p53. Experimental manipulation of p53 expression demonstrated that p53 induces Siah1 and represses TRF2 protein levels. The p53-dependent ubiquitylation and proteasomal degradation of TRF2 are attributed to the E3 ligase activity of Siah1. Knockdown of Siah1 stabilized TRF2 and delayed the onset of cellular replicative senescence, suggesting a role for Siah1 and TRF2 in p53-regulated senescence. This study reveals that p53, a downstream effector of telomere-initiated damage signalling, also functions upstream of the shelterin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号