首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
The activated form of the U-47 mutant of E. coli alkaline phosphatase is a dimer with 4g atoms of zinc per mole. Its specific activity is only two-tenths that of the wild type enzyme. Analysis of the catalytic action by transient kinetics and quenching experiments shows that only one site per dimer (half-site reactivity) can be phosphorylated by substrates and 32Pi at acidic pH and by substrates at alkaline pH. The rate constants of the phosphorylation (k2) and of the dephosphorylation (k3) of the active site are drastically changed by the mutation. The pH dependence of k2 and k3 is reported.  相似文献   

4.
Summary A fraction of erythrocyte Band 3 (M r , 93,000) glycoprotein that demonstrates decreased autophosphorylation in membranes from myotonic muscular dystrophy patients is demonstrated. Sequential affinity chromatography of Triton X-100 solubilized erythrocyte membrane proteins separated three specifically retained glycoprotein fractions on a Ricin Communis I-Sepharose 4B column. One fraction contains a portion of the major sialoglycoprotein (apparentM r , 78,000) and is specifically eluted from the column by 10mm NaCl and 100mm d-galactose (10/100). The two other glycoprotein fractions are eluted by 100mm NaCl, 10mm d-galactose (100/10) and 100mm NaCl, 100mm d-galactose (100/100). The composition of both fractions contains greater than 95% Band 3 (apparentM r , 93,000) glycoprotein.The quantities of glycoprotein in each fraction obtained from erythrocytes of myotonic dystrophy patients did not differ from the quantities obtained from control erythrocytes. Following endogenous protein kinase incubations of ghosts with [-32P]ATP, the specific [32P] phosphorylation of the 10/100 and 100/10 fractions are identical. The 100/100 fraction, which makes up approximately 3% of the total erythrocyte membrane protein, demonstrates a different pattern for myotonic dystrophy patients; specific phosphorylation was reduced by 50% relative to activity in control experiments. These findings are consistent with previous experiments that demonstrated decreased autophosphorylation of the glycoprotein portion of Band 3 (Roses & Appel, 1975,J. Membrane Biol. 20: 51) and are consistent with the autosomal dominant mode of inheritance in this disease.  相似文献   

5.
Many Proteobacteria possess the paralogous PTSNtr, in addition to the sugar transport phosphotransferase system (PTS). In the PTSNtr phosphoryl‐groups are transferred from phosphoenolpyruvate to protein EIIANtr via the phosphotransferases EINtr and NPr. The PTSNtr has been implicated in regulation of diverse physiological processes. In Escherichia coli, the PTSNtr plays a role in potassium homeostasis. In particular, EIIANtr binds to and stimulates activity of a two‐component histidine kinase (KdpD) resulting in increased expression of the genes encoding the high‐affinity K+ transporter KdpFABC. Here, we show that the phosphate (pho) regulon is likewise modulated by PTSNtr. The pho regulon, which comprises more than 30 genes, is activated by the two‐component system PhoR/PhoB under conditions of phosphate starvation. Mutants lacking EIIANtr are unable to fully activate the pho genes and exhibit a growth delay upon adaptation to phosphate limitation. In contrast, pho expression is increased above the wild‐type level in mutants deficient for EIIANtr phosphorylation suggesting that non‐phosphorylated EIIANtr modulates pho. Protein interaction analyses reveal binding of EIIANtr to histidine kinase PhoR. This interaction increases the amount of phosphorylated response regulator PhoB. Thus, EIIANtr is an accessory protein that modulates the activities of two distinct sensor kinases, KdpD and PhoR, in E. coli.  相似文献   

6.
The lymphocyte-specific, nonreceptor protein tyrosine kinase Lck has been purified from an Escherichia coli expression system using a monoclonal antibody column followed by dye-affinity chromatography. Polyacrylamide gel electrophoretic analysis of purified protein revealed a single 56 kDa band, indicating that recombinant Lck was purified to near-homogeneity. The purified enzyme displayed tyrosine kinase activity as measured by both autophosphorylation and phosphorylation of exogenous substrates. Biochemical properties including protein phosphorylation and kinetic characteristics of the enzyme have been assessed. Peptide map analysis revealed that bacterially expressed Lck is phosphorylated predominantly on the autophosphorylation site (tyrosine-394), which is characteristic for activated protein tyrosine kinases. Indeed, we found that the recombinant enzyme is approximately fivefold more active than Lck from resting T cells, which is extensively phosphorylated at the regulatory carboxy-terminal tyrosine residue (tyrosine-505). Thus, we have overproduced recombinant human Lck in E. coli and developed a simple two-step purification procedure which yields highly active enzyme. This will enable the identification and characterization of potential regulators and targets of Lck and thereby greatly facilitate studies which will clarify its role in T cell signal transduction. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) is a good model for studying dissociation and reassociation during unfolding and refolding. This study compares self-reassociated CK dimers and CK dimers that contain hybrid dimers under proper conditions. Creatine kinase forms a monomer when denatured in 6 M urea for 1 h which will very quickly form a dimer when the denaturant is diluted under suitable conditions. After modification by DTNB, CK was denatured in 6 M urea to form a modified CK monomer. Dimerization of this modified subunit of CK occurred upon dilution into a suitable buffer containing DTT. Therefore, three different types of reassociated CK dimers including a hybrid dimer can be made from two different CK monomers in the proper conditions. The CK monomers are from a urea-denatured monomer of DTNB-modified CK and from an unmodified urea dissociated monomer. Equal enzyme concentration ratios of these two monomers were mixed in the presence of urea, then diluted into the proper buffer to form the three types of reassociated CK dimers including the hybrid dimer. Reassociated CK dimers including all three different types recover about 75% activity following a two-phase course (k 1 = 4.88 × 10–3 s–1, k 2 = 0.68 × 10–3 s–1). Intrinsic fluorescence spectra of the three different CK monomers which were dissociated in 6 M urea, dissociated in 6 M urea after DTNB modification, and a mixture of the first two dissociated enzymes were studied in the presence of the denaturant urea. The three monomers had different fluorescence intensities and emission maxima. The intrinsic fluorescence maximum intensity changes of the reassociated CK dimers were also studied. The refolding processes also follow biphasic kinetics (k 1 = 3.28 × 10–3 s–1, k 2 = 0.11 × 10–3 s –1) after dilution in the proper solutions. Tsou's method [Tsou (1988), Adv. Enzymol. Rel. Areas Mol. Biol. 61, 381–436] was also used to measure the kinetic reactivation rate constants for the different three types of reassociated CK dimers, with different kinetic reactivation rate constants observed for each type. CK dissociation and reassociation schemes are suggested based on the results.  相似文献   

8.
9.
The rise of drug-resistant bacterial infections coupled with decreasing antibiotic efficacy poses a significant challenge to global health care. Acinetobacter baumannii is an insidious, emerging bacterial pathogen responsible for severe nosocomial infections aided by its ability to form biofilms. The response regulator BfmR, from the BfmR/S two-component system, is the master regulator of biofilm initiation in A. baumannii and is a tractable therapeutic target. Here we present the structure of A. baumannii BfmR using a hybrid approach combining X-ray crystallography, nuclear magnetic resonance spectroscopy, chemical crosslinking mass spectrometry, and molecular modeling. We also show that BfmR binds the previously proposed bfmRS promoter sequence with moderate affinity. While BfmR shares many traits with other OmpR/PhoB family response regulators, some unusual properties were observed.Most importantly, we observe that when phosphorylated, BfmR binds this promoter sequence with a lower affinity than when not phosphorylated. All other OmpR/PhoB family members studied to date show an increase in DNA-binding affinity upon phosphorylation. Understanding the structural and biochemical mechanisms of BfmR will aid in the development of new antimicrobial therapies.  相似文献   

10.
Intermolecular complementation of the kinase activity of CheA   总被引:19,自引:2,他引:17  
CheA is a dimeric autophosphorylating protein kinase that plays a critical role in the signal transduction network controlling chemotaxis In Escherichia coli. The autophosphorylation reaction was analysed using mutant proteins defective in kinase and regulatory functions. Proteins in which the site of autophosphorylation was mutated (CheA48HQ) or missing (CheAs) were found to phosphorylate the kinase-defective mutant, CheA470GK. The kinetics of this reaction support the hypothesis that autophosphorylation is the result of trans-phosphorylation within a dimer. The carboxy-terminal portion of CheA was previously shown to be dispensable for autophosphorylation, but required for regulation in response to environmental signals transmitted through a transducer and CheW. Mixing of CheA48HQ or CheA470GK with a truncated protein lacking this regulatory domain demonstrated that regulated autophosphoryltion requires the presence of both carboxy-terminal portions in a CheA dimer. These results indicate that the dimeric form of CheA plays an integral role in signal transduction in bacterial chemotaxis.  相似文献   

11.
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.  相似文献   

12.
Because of their differing concentration dependencies, the Na+ interactions required for the phosphorylation of (Na+,K+)-ATPase ([Na+]0.5 = 1.5 mm) and those required for the transformation of (Na+,K+-ATPase into its high-K+affinity form ([Na+]0.5 = 6 mm with ATP and 28 mm without ATP) appear to be distinct. This distribution is not attributable to modulation by either nucleotide or K+ binding. In the absence of Na+, acetylphosphate reacts to form a phosphorylenzyme the hydrolysis of which is only slightly accelerated by K+. Phosphorylenzyme formed under similar conditions except for the presence of Na+ is highly sensitive to the addition of K+. ATP and acetylphosphate both act synergistically with sodium to favor the existence of the ATPase in its high-K+-affinity form. Acetylphosphate, however, acts only by increasing the proportion of enzyme in this form, whereas, ATP also causes a reduction in [Na+]0.5. Previous studies have shown that this ATP effect is a consequence of formation of phosphorylenzyme. Results presented here suggest that Na+ binding may be necessary to produce K+-sensitive phosphorylenzyme and that nucleotide binding increases the Na+ affinity of phosphorylenzyme.  相似文献   

13.
DEAE-cellulose column chromatography of Neurospora crassa soluble mycelial extracts leads to the resolution of three major protein kinase activity peaks designated PKI, PKII, and PKIII.PKII activity is stimulated by Ca2+ and Neurospora or brain calmodulin. Maximal stimulation was observed at 2 µM-free Ca2+ and 1 µg/ml of the modulator. The stimulatory effect of the Ca2+-calmodulin complex was blocked by EGTA and by some calmodulin antagonists such as phenothiazine drugs or compound 48/80.PKII phosphorylates different proteins, among which histone II-A at a low concentration and CDPKS, the synthetic peptide specific for Ca2+-calmodulin dependent protein kinases, are the best substrates. Some phosphorylation can be detected in the absence of any exogenous acceptor. PKII activity assayed in the presence of histone II-A or in the absence of exogenous phosphate acceptor (autophosphorylation) co-elute in a DEAE-cellulose column at 0.28 M NaCl. As result of the autophosphorylation reaction of the purified enzyme a main phosphorylated component of 70 kDa was resolved by SDS-polyacrylamide gel electrophoresis. It is possible that this component is an active part of this enzyme.  相似文献   

14.
Disulfide bond formation in the regulation of eIF-2 alpha kinase by heme   总被引:8,自引:0,他引:8  
The inhibition of the autophosphorylation of the heme-regulated eukaryotic initiation factor (eIF)-2 alpha kinase (HRI) by hemin is very similar to that produced by thiol oxidation by diamide. The results obtained from the analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of unphosphorylated and phosphorylated HRI under reducing and nonreducing conditions indicate that hemin promotes disulfide formation in HRI. Hemin-promoted disulfide formation in HRI occurs under quasi-physiological conditions, i.e. 30 degrees C, 10 min at hemin concentrations of 5-10 microM. Under nondenaturing conditions, unphosphorylated HRI, phosphorylated HRI, hemin-treated unphosphorylated HRI, and hemin-treated prephosphorylated HRI are all eluted identically on Sephacryl S-300 column chromatography with an apparent molecular mass of 290,000 daltons. It appears, therefore, that the disulfide formation promoted by hemin occurs within the unit of 290,000 daltons. In addition, hemin treatment of phosphorylated HRI results in the appearance of a disulfide-linked form of higher molecular mass when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. A similar high molecular mass form is observed when HRI is treated with 1,6-bismaleimidohexane, a double sulfhydryl cross-linker agent, and the autophosphorylation of HRI and the phosphorylation of eIF-2 alpha by HRI are greatly diminished; these effects are similar to the effects of hemin on HRI. We conclude that disulfide formation by hemin provides a likely mechanism by which hemin prevents the activation and inhibits the activity of HRI.  相似文献   

15.
Changes in protein kinase activity have been investigated during the early response of suspension cultured cells of French bean to fungal elicitor. One of the kinases activated has a known target, phenylalanine ammonia-lyase (PAL), which has an important role in plant defence responses, and was purified. Kinase acivity during purification was monitored for both the PAL-derived peptide and syntide-2, which it also phosphorylated. The kinase had an M r of 55000 on the basis of gel migration, 45Ca2+ binding, autophosphorylation and phosphorylation of various substrates using in-gel assays. The kinase has been characterised with respect to kinetics and other properties in vitro and appears to be a CDPK. In-gel assays were also used to show that this kinase and a number of other CDPKs of similar M r showed complex changes in elicitor-treated suspension-cultured cells of French bean. An activation was observed within 10 min and was maintained for up to 4 h. The time course of activation was different from MAP kinase and casein kinase assayed in the same extracts. However, at 5 min after addition of elicitor there is a transient inactivation of the CDPKs before activation. This inactivation can be mimicked by adding forskolin to the cells 30 min before elicitation, which brings about changes in the cellular pH. Forskolin potentiates the oxidative burst when elicitor is subsequently added while the CDPK cannot be activated by elicitor upon forskolin treatment. In contrast, intracellular acidification brought about by forskolin brings about slight activation of MAPkinase.  相似文献   

16.
In an attempt to develop non‐ATP‐competitive inhibitors of the autophosphorylation of IR, the effects of the synthetic peptides, Ac‐DIY1158ET‐NH2 and Ac‐DY1162Y1163RK‐NH2, on the phosphorylation of IR were studied in vitro. The peptides were derived from the amino‐acid sequence in the activation loop of IR. They inhibited the autophosphorylation of IR to 20.5 and 40.7%, respectively, at 4000 µM . The Asp/Asn‐ and Glu/Gln‐substituted peptides, Ac‐NIYQT‐NH2 and Ac‐NYYRK‐NH2, more potently inhibited the autophosphorylation than did the corresponding parent peptides. The inhibitory potencies of the substituted peptides were decreased with increasing concentrations of ATP, indicating that these peptides employ an ATP‐competitive mechanism in inhibiting the autophosphorylation of IR. In contrast, those of the parent peptides were not affected. Mass spectrometry showed that the parent peptides were phosphorylated by IR, suggesting that they interact with the catalytic loop. Moreover, docking simulations predicted that the substituted peptides would interact with the ATP‐binding region of IR, whereas their parent peptides would interact with the catalytic loop of IR. Thus, Ac‐DIYET‐NH2 and Ac‐DYYRK‐NH2 are expected to be non‐ATP‐competitive inhibitors. These peptides could contribute to the development of a drug employing a novel mechanism. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Insulin receptor partially purified from human placenta by chromatography on immobilized wheat germ agglutinin was subjected to affinity cross linking to determine the relationship between the subunit structure of the multiple forms of the insulin receptor and their competence to bind insulin and undergo autophosphorylation. It was demonstrated that, whereas the 340-kDa intact receptor undergoes autophosphorylation, the 290- and 320-kDa insulin binding forms of the receptor do not. Phosphorylation at tyrosyl residues in the intact receptor was verified using a new facile method for determination of phosphorylated amino acids. The competence of the phosphorylated 340-kDa protein to bind insulin was demonstrated using a double-probe labeling protocol wherein receptor phosphorylated with [γ-32P]ATP was cross-linked with disuccinimidyl suberate (DSS) in the presence of N?B29-biotinylinsulin. The observation that succinylavidin, by virtue of its interaction with biotinyl residues, decreased the electrophoretic mobility of receptor radiochemically labeled with 32P indicated that the phosphorylated 340-kDa protein was competent to bind insulin. This result is compelling evidence that the 340-kDa phosphorylated species is insulin receptor itself, rather than a closely associated contaminant. Treatment of the receptor with the crosslinking agent DSS produced (after reduction and denaturation) α-dimer, β-dimer, and a smaller amount of tetramer. This observation is consistent with a symmetrical, tetrameric, α2β2structure for insulin receptor from human placenta, and excludes previously proposed alternative structures containing one α and One β Chain.  相似文献   

18.
The aim of the project was to develop a fast and reliable method for the quantification of the three tetracyclines: tetracycline, oxytetracycline and chlortetracycline in urine. The method is based on column-switching high-performance liquid chromatography with detection by MS–MS. Buffer is added to the sample before it is injected into the chromatographic system, and the first column which is an internal surface reversed-phase column separates the tetracyclines from the bulk of other compounds in urine. The tetracyclines are collected and concentrated on the analytical column before they are separated and eluted into the mass spectrometer in which the tetracycline are detected. The mass spectrometer is a triple quadrupole instrument and is equipped with an electrospray ion source. The MH+ ions are selected in the first quadrupole and collisionally activated in the collision cell. Upon collision, activation all three tetracyclines form fragment ions which could be assigned as: [M+H–H2O–NH3]+ which are selected in the sond mass filter. The detection limits for all three tetracyclines are about 10 ppb, and the calibration curves are linear from 10 to 1000 ppb.  相似文献   

19.
The mechanisms by which Trpm2 channels enhance mitochondrial bioenergetics and protect against oxidative stress-induced cardiac injury remain unclear. Here, the role of proline-rich tyrosine kinase 2 (Pyk2) in Trpm2 signaling is explored. Activation of Trpm2 in adult myocytes with H2O2 resulted in 10- to 21-fold increases in Pyk2 phosphorylation in wild-type (WT) myocytes which was significantly lower (~40%) in Trpm2 knockout (KO) myocytes. Pyk2 phosphorylation was inhibited (~54%) by the Trpm2 blocker clotrimazole. Buffering Trpm2-mediated Ca2+ increase with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) resulted in significantly reduced pPyk2 in WT but not in KO myocytes, indicating Ca2+ influx through activated Trpm2 channels phosphorylated Pyk2. Part of phosphorylated Pyk2 translocated from cytosol to mitochondria which has been previously shown to augment mitochondrial Ca2+ uptake and enhance adenosine triphosphate generation. Although Trpm2-mediated Ca2+ influx phosphorylated Ca2+-calmodulin kinase II (CaMKII), the CaMKII inhibitor KN93 did not significantly affect Pyk2 phosphorylation in H2O2-treated WT myocytes. After ischemia/reperfusion (I/R), Pyk2 phosphorylation and its downstream prosurvival signaling molecules (pERK1/2 and pAkt) were significantly lower in KO-I/R when compared with WT-I/R hearts. After hypoxia/reoxygenation, mitochondrial membrane potential was lower and superoxide level was higher in KO myocytes, and were restored to WT values by the mitochondria-targeted superoxide scavenger MitoTempo. Our results suggested that Ca2+ influx via tonically activated Trpm2 phosphorylated Pyk2, part of which translocated to mitochondria, resulting in better mitochondrial bioenergetics to maintain cardiac health. After I/R, Pyk2 activated prosurvival signaling molecules and prevented excessive increases in reactive oxygen species, thereby affording protection from I/R injury.  相似文献   

20.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号