首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell permeabilization using shock waves may be a way of introducing macromolecules and small polar molecules into the cytoplasm, and may have applications in gene therapy and anticancer drug delivery. The pressure profile of a shock wave indicates its energy content, and shock-wave propagation in tissue is associated with cellular displacement, leading to the development of cell deformation. In the present study, three different shock-wave sources were investigated; argon fluoride excimer laser, ruby laser, and shock tube. The duration of the pressure pulse of the shock tube was 100 times longer than the lasers. The uptake of two fluorophores, calcein (molecular weight: 622) and fluorescein isothiocyanate-dextran (molecular weight: 71,600), into HL-60 human promyelocytic leukemia cells was investigated. The intracellular fluorescence was measured by a spectrofluorometer, and the cells were examined by confocal fluorescence microscopy. A single shock wave generated by the shock tube delivered both fluorophores into approximately 50% of the cells (p < 0.01), whereas shock waves from the lasers did not. The cell survival fraction was >0.95. Confocal microscopy showed that, in the case of calcein, there was a uniform fluorescence throughout the cell, whereas, in the case of FITC-dextran, the fluorescence was sometimes in the nucleus and at other times not. We conclude that the impulse of the shock wave (i.e., the pressure integrated over time), rather than the peak pressure, was a dominant factor for causing fluorophore uptake into living cells, and that shock waves might have changed the permeability of the nuclear membrane and transferred molecules directly into the nucleus.  相似文献   

2.
The mechanical properties of cells and tissues play a well-known role in physiology and disease. The model organism Caenorhabditis elegans exhibits mechanical properties that are still poorly understood, but are thought to be dominated by its collagen-rich outer cuticle. To our knowledge, we use a novel microfluidic technique to reveal that the worm responds linearly to low applied hydrostatic stress, exhibiting a volumetric compression with a bulk modulus, κ = 140 ± 20 kPa; applying negative pressures leads to volumetric expansion of the worm, with a similar bulk modulus. Surprisingly, however, we find that a variety of collagen mutants and pharmacological perturbations targeting the cuticle do not impact the bulk modulus. Moreover, the worm exhibits dramatic stiffening at higher stresses—behavior that is also independent of the cuticle. The stress-strain curves for all conditions can be scaled onto a master equation, suggesting that C. elegans exhibits a universal elastic response dominated by the mechanics of pressurized internal organs.  相似文献   

3.
alphaA- and alphaB-crystallins are small heat shock proteins and molecular chaperones that are known to prevent non-specific aggregation of denaturing proteins. Recent work indicates that alphaA-/- lens epithelial cells grow at a slower rate than wild-type cells, and cultured alphaB-/- cells demonstrate increased hyperproliferation and genomic instability, suggesting that these proteins may exert a direct effect on the cell cycle kinetics, and influence cell proliferation. However, the cell cycle parameters of alphaA/alphaBKO (double knockout) cells have not been analyzed. Here we investigate the cell cycle kinetics of synchronized mouse lens epithelial cultures derived from wild-type and alphaA/alphaB double knockout (alphaA/alphaBKO) mice using BrdU labeling of proliferating cells, and flow cytometric analysis. We also provide data on the changing pattern of expression of HSP25, a small heat shock protein in alphaA/alphaBKO and wild-type cells during the cell cycle. Using serum starvation to synchronize cells in the quiescent G0 phase, and restimulation with serum followed by BrdU labeling and flow cytometry, the data indicated that as compared to wild-type cells, a <50% smaller fraction of the alphaA/alphaBKO cells entered the DNA synthetic S phase of the cell cycle. Furthermore, there was a delay in cell cycle transit through S phase in alphaA/alphaBKO cells, suggesting that although capable of entering S phase, the alphaA/alphaBKO cells are blocked in G1 phase, and are delayed in their cell cycle progression. Immunoblot analysis with antibodies to the small heat shock protein HSP25 indicated that although HSP25 increased in G1 phase of wild-type cells, and remained elevated on further progression through the cell cycle, HSP25 accumulation was delayed to S phase in alphaA/alphaBKO cells. These data can be interpreted to indicate that mouse lens epithelial cell progression through the cell cycle is significantly affected by expression of alphaA and alphaB-crystallin.  相似文献   

4.
Indirect immunofluorescent staining revealed that Prostatic Binding Protein, the major androgen-dependent protein in rat ventral prostate invivo, is associated specifically with the epithelial cells in primary cell cultures derived from rat ventral prostate. The epithelial cells release Prostatic Binding Protein into the medium during primary culture. Denovo synthesis of Prostatic Binding Protein is demonstrable during early phases of cell culture. Prostatic Binding Protein is an excellent marker for the identification of functional prostate epithelial cells and for the study of regulation at the cellular level of the synthesis and secretion of a major androgen-dependent prostate protein.  相似文献   

5.
The interaction of lithotripter-generated shock waves with adherent cells is investigated using high-speed optical techniques. We show that shock waves permeabilize adherent cells in vitro through the action of cavitation bubbles. The bubbles are formed in the trailing tensile pulse of a lithotripter-generated shock wave where the pressure drops below the vapor pressure. Upon collapse of cavitation bubbles, a strong flow field is generated which accounts for two effects: first, detachment of cells from the substrate; and second, the temporary opening of cell membranes followed by molecular uptake, a process called sonoporation. Comparison of observed cell detachment with results from a theoretical model considering peeling cell detachment by a wall jet-induced shear stress shows reasonable agreement.  相似文献   

6.
Membranes of Mycoplasmapneumoniae were prepared following several different cell lysis procedures (freeze-thaw, french press, digitonin, sonication, osmotic shock, pH shock). All possessed some degree of toxicity for ciliated epithelial cells, but the french press and freeze-thaw processes were optimal in terms of lysis efficiency, membrane yield, and cytotoxicity. Membrane proteins from virulent and attenuated mycoplasmas were electrophoresed with a new, high resolution electrophoresis technique (gradient polyacrylamide gels), and strain differences were detectable among the 50+ discernible bands.  相似文献   

7.
8.
The exact nature of shock wave (SW) action is not, as yet, fully understood, although a possible hypothesis may be that shock waves induce neoangiogenesis. To test this hypothesis, a three-dimensional (3D) culture model on Matrigel was developed employing a human microvascular endothelial cell line (HMEC-1) which was stimulated with low energy soft- focused SW generated by an SW lithotripter. After 12 hours we observed a statistically significant increase in capillary connections subsequent to shock-wave treatment in respect to the control group and a marked 3-hour down-regulation in genes involved in the apoptotic processes (BAX, BCL2LI, GADD45A, PRKCA), in cell cycle (CDKN2C, CEBPB, HK2, IRF1, PRKCA), oncogenes (JUN, WNT1), cell adhesion (ICAM-1), and proteolytic systems (CTSD, KLK2, MMP10). Our preliminary results indicate that microvascular endothelial cells in vitro quickly respond to SW, proliferating and forming vessel-like structures, depending on the energy level employed and the number of shocks released. The early decreased expression in the analysed genes could be interpreted as the first reactive response of the endothelial cells to the external stimuli and the prelude to the events characterizing the neo-angiogenic sequence.  相似文献   

9.
Shock waves nowadays are well known for their regenerative effects. Basic research findings showed that shock waves do cause a biological stimulus to target cells or tissue without any subsequent damage. Therefore, in vitro experiments are of increasing interest. Various methods of applying shock waves onto cell cultures have been described. In general, all existing models focus on how to best apply shock waves onto cells.However, this question remains: What happens to the waves after passing the cell culture? The difference of the acoustic impedance of the cell culture medium and the ambient air is that high, that more than 99% of shock waves get reflected! We therefore developed a model that mainly consists of a Plexiglas built container that allows the waves to propagate in water after passing the cell culture. This avoids cavitation effects as well as reflection of the waves that would otherwise disturb upcoming ones. With this model we are able to mimic in vivo conditions and thereby gain more and more knowledge about how the physical stimulus of shock waves gets translated into a biological cell signal (“mechanotransduction").  相似文献   

10.
11.
Two-component lipid bilayers of dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine were studied by measuring, ultrasonic velocity and absorption at 3 MHz. The phase diagram of the two-component lipid bilayers is discussed based upon the transition anomalies of the ultrasonic velocity as well as absorption, and it is suggested that this binary system has two critical points. The bulk modulus of lipid bilayers was determined from the ultrasonic velocity to be (2.2–3.0) × 1010dynecm2, whereas the bulk viscosity calculated from the absorption was 10–20 P except for the transition regions.  相似文献   

12.
Platinum chemosensitivity detection plays a vital role during endometrial cancer treatment because chemotherapy responses have profound influences on patient's prognosis. Although several methods can be used to detect drug resistance characteristics, studies on detecting drug sensitivity based on dynamic and quantitative phase imaging of cancer cells are rare. In this study, digital holographic microscopy was applied to distinguish drug‐resistant and nondrug‐resistant endometrial cancer cells. Based on the reconstructed phase images, temporal evolutions of cell height (CH), cell projected area (CPA) and cell volume were quantitatively measured. The results show that change rates of CH and CPA were significantly different between drug‐resistant and nondrug‐resistant endometrial cancer cells. Furthermore, the results demonstrate that morphological characteristics have the potential to be utilized to distinguish the drug sensitivity of endometrial cancer cells, and it may provide new perspectives to establish optical methods to detect drug sensitivity and guide chemotherapy in endometrial cancer.   相似文献   

13.
14.
15.
A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes.  相似文献   

16.
In renalischemia, tubular obstruction induced by swelling of epithelialcells might be an important mechanism for reduction of the glomerularfiltration rate. We investigated ischemic cell swelling byexamining volume regulation of A6 cells during metabolic inhibition(MI) induced by cyanide and 2-deoxyglucose. Changes in cell volume weremonitored by recording cell thickness (Tc). Intracellular pH (pHc) measurements were performed with thepH-sensitive probe 5-chloromethyl-fluoresceine diacetate.Tc measurements showed that MI increases cellvolume. Cell swelling during MI is proportional to the rate ofNa+ transport and is not followed by a volume regulatoryresponse. Furthermore, MI prevents the regulatory volume decrease (RVD) elicited by a hyposmotic shock. MI induces a pronounced intracellular acidification that is conserved during a subsequent hypotonic shock. Atransient acidification induced by a NH4Cl prepulse causes a marked delay of the RVD in response to a hypotonic shock. On theother hand, acute lowering of external pH to 5, simultaneously with thehypotonic shock, allowed the onset of RVD. However, this RVD wascompletely arrested ~10 min after the initiation of the hyposmoticchallenge. The inhibition of RVD appears to be related to thepronounced acidification that occurred within this time period. Incontrast, when external pH was lowered 20 min before the hyposmoticshock, RVD was absent. These data suggest that internal acidificationinhibits cellular volume regulation in A6 cells. Therefore, theintracellular acidification associated with MI might at least partlyaccount for the failure of volume regulation in swollen epithelial cells.

  相似文献   

17.
The correlations between the germ cell population and the blood-testis barrier were studied during puberty and throughout the reproductive cycle in a seasonal breeder, the mink. A classification of 12 stages, corresponding to the cellular associations appearing during the cycle of the seminiferous epithelium, was proposed and used to identify the stages of the cycle in pubertal mink. In adult mink, the reproductive cycle was divided into two spermatogenic phases--an active phase lasting 9 months, and an inactive phase lasting 3 months. The active spermatogenic phase was broken down into three distinct periods: the first spermatogenic wave, the peak of spermatogenic activity, and the last spermatogenic wave. Degenerating germ cells were found in comparable and relatively low proportions during puberty and during the first and last spermatogenic waves of the adult reproductive cycle. The permeability of the blood-testis barrier to intravascularly infused electron-opaque tracers (i.e., horseradish peroxidase and lanthanum) was tested at the time of the first spermatogenic wave at puberty and throughout the reproductive cycle of the adult. The relationship between epithelial permeability and germ cell populations prevailing during puberty and during the first and last spermatogenic waves of the adult active phase was the same. During puberty, the establishment of the blood-testis barrier did not coincide with the appearance of a particular step of meiosis but was correlated with the development of a tubular lumen. In adult mink, the barrier cyclically decayed during the last wave of the active spermatogenic phase and reformed during the first wave of the next active phase. The decay and the reformation of the barrier were not coincident with the appearance or disappearance of a particular generation of the germ cell population from the seminiferous epithelium but were correlated with cyclic cytological changes in Sertoli cells and the rhythmic development and occlusion of the lumen. During the peak months of the active spermatogenic phase, however, a blood-testis barrier secluded spermatogonia and young spermatocytes from older generations of germ cells. It is concluded that during puberty and also during the first and last spermatogenic wave of the adult mink reproductive cycle, the development of germ cells is possible in the absence of a competent, impermeable blood-testis barrier, and the transient presence of a permeable epithelial barrier does not initiate an autoimmune response of sufficient magnitude to cause destruction of the seminiferous epithelium.  相似文献   

18.
Geobacter sulfurreducens is a δ-proteobacterium bacteria that has biotechnological applications in bioremediation and as biofuel cells. Development of these applications requires stabilization and preservation of the bacteria in thin porous coatings on electrode surfaces and in flow-through bioreactors. During the manufacturing of these coatings the bacteria are exposed to hyperosmotic stresses due to dehydration and the presence of carbohydrates in the medium. In this study we focused on quantifying the response of G. sulfurreducens to hyperosmotic shock and slow dehydration to understand the hyperosmotic damage mechanisms and to develop the methodology to maximize the survival of the bacteria. We employed FTIR spectroscopy to determine the changes in the structure and the phase transition behavior of the cell membrane. Hyperosmotic shock resulted in greatly decreased membrane lipid order in the gel phase and a less cooperative membrane phase transition. On the other hand, slow dehydration resulted in increased membrane phase transition temperature, less cooperative membrane phase transition and a small decrease in the gel phase lipid order. Both hyperosmotic shock and slow dehydration were accompanied by a decrease in viability. However, we identified that in each case the membrane damage mechanism was different. We have also shown that the post-rehydration viability could be maximized if the lyotropic phase change of the cell membrane was eliminated during dehydration. On the other hand, lyotropic phase change during re-hydration did not affect the viability of G. sulfurreducens. This study conclusively shows that the cell membrane is the primary site of injury during hyperosmotic stress, and by detailed analysis of the membrane structure as well as its thermodynamic transitions it is indeed possible to develop methods in a rational fashion to maximize the survival of the bacteria during hyperosmotic stress.  相似文献   

19.
《Cytotherapy》2014,16(1):33-40
Background aimsAmniotic membrane (AM), the innermost layer of human placenta, is composed of a single layer of epithelial cells, a basement membrane and an avascular stroma. The AM has many functions and properties, among which angiogenic modulatory and immunoregulatory effects are applicable in cancer therapy. Because these functions belong to amniotic epithelial cells, in this study we compared the anti-cancer effect of amniotic epithelial cells and the whole AM.MethodsThe effect of the AM and the amniotic epithelial cells on cancer cell apoptosis was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunocytochemistry. The effect of the AM on angiogenesis in conditions both with and without epithelial cells was also evaluated using rat aortic ring assay.ResultsThere was a decrease in cancer cell viability after adding either AM or amniotic epithelial cell supernatant to cancer cells. A significant increase in caspase-3 and caspase-8 expression in cancer cells treated with amniotic epithelial cell supernatant was observed. The recorded media also demonstrated the possible induction of apoptosis in cancer cells treated with the amniotic epithelial cell supernatant. In the aorta ring assay, the AM showed an anti-angiogenic effect in the presence of its epithelial cells; however, this effect was altered to initiate angiogenesis when amniotic epithelial cells were removed from the AM.ConclusionsThese results suggest that amniotic epithelial cells, with their anti-angiogenic effect and induction of apoptosis, are candidates for cancer therapeutic agents in the near future.  相似文献   

20.
Breast cancer is a leading cause of mortality in the Western world. It is well established that the spread of breast cancer, first locally and later distally, is a major factor in patient prognosis. Experimental systems of breast cancer rely on cell lines usually derived from primary tumours or pleural effusions. Two major obstacles hinder this research: (i) some known sub-types of breast cancers (notably poor prognosis luminal B tumours) are not represented within current line collections; (ii) the influence of the tumour microenvironment is not usually taken into account.We demonstrate a technique to culture primary breast cancer specimens of all sub-types. This is achieved by using three-dimensional (3D) culture system in which small pieces of tumour are embedded in soft rat collagen I cushions. Within 2-3 weeks, the tumour cells spread into the collagen and form various structures similar to those observed in human tumours1. Viable adipocytes, epithelial cells and fibroblasts within the original core were evident on histology. Malignant epithelial cells with squamoid morphology were demonstrated invading into the surrounding collagen. Nuclear pleomorphism was evident within these cells, along with mitotic figures and apoptotic bodies.We have employed Optical Projection Tomography (OPT), a 3D imaging technology, in order to quantify the extent of tumour spread in culture. We have used OPT to measure the bulk volume of the tumour culture, a parameter routinely measured during the neo-adjuvant treatment of breast cancer patients to assess response to drug therapy. Here, we present an opportunity to culture human breast tumours without sub-type bias and quantify the spread of those ex vivo. This method could be used in the future to quantify drug sensitivity in original tumour. This may provide a more predictive model than currently used cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号