首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The determination of diffusion coefficients from fluorescence recovery data is often complicated by geometric constraints imposed by the complex shapes of intracellular compartments. To address this issue, diffusion of proteins in the lumen of the endoplasmic reticulum (ER) is studied using cell biological and computational methods. Fluorescence recovery after photobleaching (FRAP) experiments are performed in tissue culture cells expressing GFP-KDEL, a soluble, fluorescent protein, in the ER lumen. The three-dimensional (3D) shape of the ER is determined by confocal microscopy and computationally reconstructed. Within these ER geometries diffusion of solutes is simulated using the method of particle strength exchange. The simulations are compared to experimental FRAP curves of GFP-KDEL in the same ER region. Comparisons of simulations in the 3D ER shapes to simulations in open 3D space show that the constraints imposed by the spatial confinement result in two- to fourfold underestimation of the molecular diffusion constant in the ER if the geometry is not taken into account. Using the same molecular diffusion constant in different simulations, the observed speed of fluorescence recovery varies by a factor of 2.5, depending on the particular ER geometry and the location of the bleached area. Organelle shape considerably influences diffusive transport and must be taken into account when relating experimental photobleaching data to molecular diffusion coefficients. This novel methodology combines experimental FRAP curves with high accuracy computer simulations of diffusion in the same ER geometry to determine the molecular diffusion constant of the solute in the particular ER lumen.  相似文献   

2.
Obtaining quantitative kinetic parameters from fluorescence recovery after photobleaching (FRAP) experiments generally requires a theoretical analysis of protein mobility and appropriate solutions for FRAP recovery derived for a given geometry. Here we provide a treatment of FRAP recovery for a molecule undergoing a combined process of reversible membrane association and lateral diffusion on the plasma membrane for two commonly used bleach geometries: stripes, and boxes. Such analysis is complicated by the fact that diffusion of a molecule during photobleaching can lead to broadening of the bleach area, resulting in significant deviations of the actual bleach shape from the desired bleach geometry, which creates difficulty in accurately measuring kinetic parameters. Here we overcome the problem of deviations between actual and idealized bleach geometries by parameterizing, more accurately, the initial postbleach state. This allows for reconstruction of an accurate and analytically tractable approximation of the actual fluorescence distribution. Through simulated FRAP experiments, we demonstrate that this method can be used to accurately measure a broad range of combinations of diffusion constants and exchange rates. Use of this method to analyze the plextrin homology domain of PLC-δ1 in Caenorhabditis elegans results in quantitative agreement with prior analysis of this domain in other cells using other methods. Because of the flexibility, relative ease of implementation, and its use of standard, easily obtainable bleach geometries, this method should be broadly applicable to investigation of protein dynamics at the plasma membrane.  相似文献   

3.
In this study, new mathematical models were developed for analysis of fluorescence recovery after photobleaching (FRAP) data to account for features not represented in previous analysis: conical photobleaching geometry, spatial variations in binding of fluorescent molecules, and directed transport of fluorescent molecules. To facilitate computations in conical geometry, a fast computational method for calculation of fluorescence recovery is presented. Two approximations are presented to aid in FRAP analysis when binding varies spatially, one applying to cases of relatively fast diffusion and slow binding and the other to binding of molecules to small cellular structures. Numerical results show that using a model that represents the influential physical processes and that is formulated in the appropriate geometry can substantially improve the accuracy of FRAP calculations.  相似文献   

4.
Fluorescence recovery after photobleaching (FRAP) using confocal laser scanning microscopes (confocal FRAP) has become a valuable technique for studying the diffusion of biomolecules in cells. However, two-dimensional confocal FRAP sometimes yields results that vary with experimental setups, such as different bleaching protocols and bleaching spot sizes. In addition, when confocal FRAP is used to measure diffusion coefficients (D) for fast diffusing molecules, it often yields D-values that are one or two orders-of-magnitude smaller than that predicted theoretically or measured by alternative methods such as fluorescence correlation spectroscopy. Recently, it was demonstrated that this underestimation of D can be corrected by taking diffusion during photobleaching into consideration. However, there is currently no consensus on confocal FRAP theory, and no efforts have been made to unify theories on conventional and confocal FRAP. To this end, we generalized conventional FRAP theory to incorporate diffusion during photobleaching so that analysis by conventional FRAP theory for a circular region of interest is easily applicable to confocal FRAP. Finally, we demonstrate the accuracy of these new (to our knowledge) formulae by measuring D for soluble enhanced green fluorescent protein in aqueous glycerol solution and in the cytoplasm and nucleus of COS7 cells.  相似文献   

5.
Recent advances in our understanding of the intracellular trafficking, membrane microenvironment, and subcellular sites of signaling of Ras have been driven by observations of GFP-tagged Ras in living cells. Here, we describe methods to gain further insight into the regulation of these events through the use of quantitative fluorescence microscopy. We focus on three techniques, fluorescence recovery after photobleaching (FRAP), fluorescence loss in photobleaching (FLIP), and selective photobleaching. While all of these techniques exploit photobleaching as a tool to monitor protein dynamics, they each provide a unique subset of information. In particular, FRAP provides measurements of protein mobility via lateral diffusion by monitoring recovery of fluorescence into a region following a single photobleaching event. FLIP assesses the level of continuity and communication between subcellular compartments by repetitively photobleaching a region of interest and following concomitant loss of fluorescence from other areas in the cell. Selective photobleaching reveals kinetic information about active and passive transport of proteins into organelles such as the Golgi complex or between areas of protein enrichment such as caveolae. We describe how to implement these techniques using commercially available confocal microscopes and outline methods for data analysis. Finally, we discuss how these approaches are being used to provide new insights into the mechanisms of membrane microdomain localization, vesicular versus non-vesicular transport, and kinetics of exchange of Ras on and off of cell membranes.  相似文献   

6.
Fluorescence recovery after photobleaching (FRAP) is widely used to measure fluorophore diffusion in artificial solutions and cellular compartments. Two new strategies to analyze FRAP data were investigated theoretically and applied to complex systems with anomalous diffusion or multiple diffusing species: 1) continuous distributions of diffusion coefficients, alpha(D), and 2) time-dependent diffusion coefficients, D(t). A regression procedure utilizing the maximum entropy method was developed to resolve alpha(D) from fluorescence recovery curves, F(t). The recovery of multi-component alpha(D) from simulated F(t) with random noise was demonstrated and limitations of the method were defined. Single narrow Gaussian alpha(D) were recovered for FRAP measurements of thin films of fluorescein and size-fractionated FITC-dextrans and Ficolls, and multi-component alpha(D) were recovered for defined fluorophore mixtures. Single Gaussian alpha(D) were also recovered for solute diffusion in viscous media containing high dextran concentrations. To identify anomalous diffusion from FRAP data, a theory was developed to compute F(t) and alpha(D) for anomalous diffusion models defined by arbitrary nonlinear mean-squared displacement <x2> versus time relations. Several characteristic alpha(D) profiles for anomalous diffusion were found, including broad alpha(D) for subdiffusion, and alpha(D) with negative amplitudes for superdiffusion. A method to deduce apparent D(t) from F(t) was also developed and shown to provide useful complementary information to alpha(D). alpha(D) and D(t) were determined from photobleaching measurements of systems with apparent anomalous subdiffusion (nonuniform solution layer) and superdiffusion (moving fluid layer). The results establish a practical strategy to characterize complex diffusive phenomena from photobleaching recovery measurements.  相似文献   

7.
Motions of membrane-associated proteins within and between membranes are essential for many cellular functions. We describe the application of fluorescence recovery after photobleaching (FRAP) beam-size analysis to investigate the role of palmitoylation in the membrane targeting and membrane association dynamics of H-Ras. The method described distinguishes between FRAP by lateral diffusion and by cytoplasmic exchange, and enables to obtain an estimate of the membrane affinity in live cells. These studies show distinct roles for the two palmitoylation sites (Cys181 and Cys184) on H-Ras, with different effects on membrane affinity and microlocalization.  相似文献   

8.
9.
The effects of the fact that the laser sources typically used in fluorescence photobleaching recovery (FPR) experiments in the most commonly employed in-line microscope imaging geometries, are highly linearly polarized, are examined in some detail. The implications of the results, in particular for the interpretation of FPR data in complex cell membrane systems in terms of laterally mobile and immobile sub-populations of the labelled molecular species of concern, are discussed. Methods of experimentally eliminating the potentially major rotational diffusion-based artifacts, different from those appropriate to three-dimensional (solution or suspension) systems which require other than in-line geometries, are delineated.Abbreviations FPR fluorescence photobleaching recovery - FRAP fluorescence recovery after photobleaching - 2- and 3-D two- and three-dimensional  相似文献   

10.
Fluorescence recovery after photobleaching (FRAP) experiments to measure the mobility of cell surface components require a brief, but intense, pulse of light to photobleach the fluorescence in a restricted area of the cell. We studied possible photodamage to the cell surface during the photobleaching step using light and scanning electron microscopy (SEM) and various FRAP measurements themselves. The cell membrane was left impermeable to trypan blue after photobleaching. SEM studies show that the morphology of the cell surface is not altered by photobleaching. Cells can be repeatedly photobleached and/or photobleached using longer bleach times and greater intensities without systematically altering FRAP kinetics. Singlet oxygen quenchers or free radical traps designed to inhibit putative photoreagents produced during photobleaching do not markedly affect the results. Fluorescein and rhodamine labels give similar results. All of these results, obtained with several different monolayer cultures, suggest that photodamage induced during photobleaching is not a serious artefact in the cellular FRAP results obtained to date.  相似文献   

11.
The mobility of cell surface MHC class I molecules on HeLa cells was measured by fluorescence recovery after photobleaching (FRAP). The probe used for these studies was the phycobiliprotein R-phycoerythrin coupled to Fab fragments of a monoclonal antibody specific for human monomorphic MHC class I molecules. It was found that the recovery curves could be equally well fitted by either a random diffusion model with an immobile component or by an anomalous diffusion model. In the latter case, the anomalous diffusion exponent was consistent with that previously determined by single-particle tracking (SPT) experiments using the same probe (P. R. Smith, I. E. G. Morrison, K. M. Wilson, N. Fernandez, and R. J. Cherry. 1999. Biophys. J. 76:3331-3344). The FRAP experiments, however, yielded a considerably higher value of D(0), the diffusion coefficient for a time interval of 1 s. To determine whether the results were probe dependent, FRAP measurements were also performed with the same monoclonal antibody labeled with Oregon Green. These experiments gave similar results to those obtained with the phycoerythrin probe. FRAP experiments with the lipid probe 5-N-(octadecanoyl) aminofluoroscein (ODAF) bound to HeLa cells gave typical results for lipid diffusion. Overall, our observations and analysis are consistent with anomalous diffusion of MHC class I diffusion on HeLa cells, but quantitative differences between FRAP and SPT data remain to be explained.  相似文献   

12.
Structural inhomogeneities in biomembranes can lead to complex diffusive behavior of membrane proteins that depend on the length or time scales that are probed. This effect is well studied in eukaryotic cells, but has been explored only recently in bacteria. Here we used fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) to study diffusion of the membrane protein TetA-YFP in E. coli. We find that the diffusion constant determined from FRAP is comparable to other reports of inner membrane protein diffusion constants in E. coli. However, FCS, which probes diffusion on shorter length scales, gives a value that is almost two orders of magnitude higher and is comparable to lipid diffusion constants. These results suggest there is a population of TetA-YFP molecules in the membrane that move rapidly over short length scales (∼ 400 nm) but move significantly more slowly over the longer length scales probed by FRAP.  相似文献   

13.
14.
15.
Fluorescence recovery after photobleaching (FRAP) is the preferred method for analyzing the lateral mobility of fluorescently-tagged proteins in the plasma membranes (PMs) of live cells. FRAP experiments are described as being easy to perform; however, the analysis of the acquired data can be difficult. The evaluation procedure must be properly combined with the imaging setup of the confocal microscope to provide unbiased results.With the aim of increasing the accuracy of determining the diffusion coefficient (D) and mobile fraction (Mf) of PM proteins, we developed a novel method for FRAP analysis in the equatorial plane of the cell. This method is based on the calculation of photobleaching characteristics, derived from the light intensity profile and optical parameters of the confocal microscope, and on the model of fluorescent molecule diffusion in PM regions outside of the focal plane. Furthermore, cell movement artifacts in the FRAP data are ameliorated by using a region of interest, which is not fixed but instead moves adaptively in coordination with the movement of cells.When this method was used to determine the mobility of the δ-opioid receptor-eYFP in HEK293 cells, a highly significant decrease in receptor mobility was detected in cholesterol-depleted cells. This decrease was fully reversible by the replenishment of cholesterol levels. Our results demonstrate the crucial role played by cholesterol in the dynamic organization of δ-opioid receptors in the PM under in vivo conditions. Our method may be applied for the determination of the D and Mf values of other PM proteins.  相似文献   

16.
BackgroundFluorescence recovery after photobleaching (FRAP) studies can provide kinetic information about proteins in cells. Single point mutations can significantly affect the binding kinetics of proteins and result in variations in the recovery half time (t50) measured in FRAP experiments. FRAP measurements of linker histone (LH) proteins in the cell nucleus have previously been reported by Brown et al. (2006) and Lele et al. (2006).MethodsWe performed Brownian dynamics (BD) simulations of the diffusional association of the wild-type and 38 single or double point mutants of the globular domain of mouse linker histone H1.0 (gH1.0) to a nucleosome. From these simulations, we calculated the bimolecular association rate constant (kon), the Gibbs binding free energy (ΔG) and the dissociation rate constant (koff) related to formation of a diffusional encounter complex between the nucleosome and the gH1.0.ResultsWe used these parameters, after application of a correction factor to account for the effects of the crowded environment of the nucleus, to compute FRAP recovery times and curves that are in good agreement with previously published, experimentally measured FRAP recovery time courses.ConclusionsOur computational analysis suggests that BD simulations can be used to predict the relative effects of single point mutations on FRAP recovery times related to protein binding.General SignificanceBD simulations assist in providing a detailed molecular level interpretation of FRAP data.  相似文献   

17.
Quantitative measurements of diffusion can provide important information about how proteins and lipids interact with their environment within the cell and the effective size of the diffusing species. Confocal fluorescence recovery after photobleaching (FRAP) is one of the most widely accessible approaches to measure protein and lipid diffusion in living cells. However, straightforward approaches to quantify confocal FRAP measurements in terms of absolute diffusion coefficients are currently lacking. Here, we report a simplified equation that can be used to extract diffusion coefficients from confocal FRAP data using the half time of recovery and effective bleach radius for a circular bleach region, and validate this equation for a series of fluorescently labeled soluble and membrane‐bound proteins and lipids. We show that using this approach, diffusion coefficients ranging over three orders of magnitude can be obtained from confocal FRAP measurements performed under standard imaging conditions, highlighting its broad applicability.  相似文献   

18.
One of the most dominant methods cells use for a large class of cellular processes is reaction (or binding) diffusion kinetics, which are controlled by kinetic constants such as diffusion coefficients and on/off binding rate constants. Fluorescence recovery after photobleaching (FRAP) can be used to determine these kinetic constants in living cells. While an analytic expression for FRAP formulae for pure diffusion has been available for some time, an analytic FRAP formula for the binding diffusion model has not been reported yet. Here, we present an analytic FRAP formula for the binding diffusion model in an explicit form allowing for diffusion of the bound complex for either a uniform circle laser profile or a Gaussian laser profile.  相似文献   

19.
Fluorescence recovery after photobleaching (FRAP) is a widely used tool for estimating mobility parameters of fluorescently tagged molecules in cells. Despite the widespread use of confocal laser scanning microscopes (CLSMs) to perform photobleaching experiments, quantitative data analysis has been limited by lack of appropriate practical models. Here, we present a new approximate FRAP model for use on any standard CLSM. The main novelty of the method is that it takes into account diffusion of highly mobile molecules during the bleach phase. In fact, we show that by the time the first postbleach image is acquired in a CLSM a significant fluorescence recovery of fast-moving molecules has already taken place. The model was tested by generating simulated FRAP recovery curves for a wide range of diffusion coefficients and immobile fractions. The method was further validated by an experimental determination of the diffusion coefficient of fluorescent dextrans and green fluorescent protein. The new FRAP method was used to compare the mobility rates of fluorescent dextrans of 20, 40, 70, and 500 kDa in aqueous solution and in the nucleus of living HeLa cells. Diffusion coefficients were lower in the nucleoplasm, particularly for higher molecular weight dextrans. This is most likely caused by a sterical hindrance effect imposed by nuclear components. Decreasing the temperature from 37 to 22 degrees C reduces the dextran diffusion rates by approximately 30% in aqueous solution but has little effect on mobility in the nucleoplasm. This suggests that spatial constraints to diffusion of dextrans inside the nucleus are insensitive to temperature.  相似文献   

20.
Shuzhen Yang  Heng Li  Jie Xie  Yandao Gong 《BBA》2007,1767(1):15-21
The cell-wide mobility of PBSs was confirmed by synchronously monitoring the fluorescence recovery after photobleaching (FRAP) and the fluorescence loss in photobleaching (FLIP). On the other hand, a fluorescence recovery was still observed even if PBSs were immobile (PBSs fixed on the membranes by betaine and isolated PBSs fixed on the agar plate) or PBS mobility was unobservable (cell wholly bleached). Furthermore, it was proved that some artificial factors were involved not only in FRAP but also in FLIP, including renaturation of the reversibly denatured proteins, laser scanning-induced fluorescence loss and photo-damage to the cell. With consideration of the fast renaturation component in fluorescence recovery, the diffusion coefficient was estimated to be tenfold smaller than that without the component. Moreover, it was observed that the fluorescence intensity on the bleached area was always lower than that on the non-bleached area, even after 20 min, while it should be equal if PBSs were mobile freely. Based on the increasing proportion of the PBSs anti-washed to Triton X-100 (1%) with prolonged laser irradiation to the cells locked in light state 1 by PBQ, it was concluded that some PBSs became immobile due to photo-linking to PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号