首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The syncytial divisions of the Drosophila melanogaster embryo lack some of the well established cell-cycle checkpoints. It has been suggested that without these checkpoints the divisions would display a reduced fidelity. To test this idea, we examined division error frequencies in individuals bearing an abnormally long and rearranged second chromosome, designated C(2)EN. Relative to a normal chromosome, this chromosome imposes additional structural demands on the mitotic apparatus in both the early syncytial embryonic divisions and the later somatic divisions. We demonstrate that the C(2)EN chromosome does not increase the error frequency of the late larva neuroblast divisions. However, in the syncytial embryonic nuclear divisions, the C(2)EN chromosome produces a 10-fold increase in division errors relative to embryos with a normal karyotype. During late anaphase of the neuroblast divisions, the sister C(2)EN chromosomes cleanly separate from one another. In contrast, during late anaphase of the syncytial divisions in C(2)EN-bearing nuclei, large amounts of chromatin often lag on the metaphase plate. Live analysis of C(2)EN-bearing embryos demonstrates that individual nuclei in the syncytial population of dividing nuclei often delay in their initiation of anaphase. These delays frequently lead to division errors. Eventually the products of the nuclei delayed in anaphase sink inward and are removed from the dividing population of syncytial nuclei. These results suggest that the Drosophila embryo may be equipped with mechanisms that monitor the fidelity of the syncytial nuclear divisions. Unlike checkpoints that rely on cell cycle delays to identify and correct division errors, these embryonic mechanisms rely on cell cycle delays to identify and discard the products of division errors.  相似文献   

2.
In the early embryo of many species, comparatively small spindles are positioned near the cell center for subsequent cytokinesis. In most insects, however, rapid nuclear divisions occur in the absence of cytokinesis, and nuclei distribute rapidly throughout the large syncytial embryo. Even distribution and anchoring of nuclei at the embryo cortex are crucial for cellularization of the blastoderm embryo. The principles underlying nuclear dispersal in a syncytium are unclear. We established a cell-free system from individual Drosophila melanogaster embryos that supports successive nuclear division cycles with native characteristics. This allowed us to investigate nuclear separation in predefined volumes. Encapsulating nuclei in microchambers revealed that the early cytoplasm is programmed to separate nuclei a distinct distance. Laser microsurgery revealed an important role of microtubule aster migration through cytoplasmic space, which depended on F-actin and cooperated with anaphase spindle elongation. These activities define a characteristic separation length scale that appears to be a conserved property of developing insect embryos.  相似文献   

3.
Drosophila embryogenesis is initiated by a series of syncytial mitotic divisions. The first nine of these divisions are internal, and are accompanied by two temporally distinct nuclear movements that lead to the formation of a syncytial blastoderm with a uniform monolayer of cortical nuclei. The first of these movements, which we term axial expansion, occurs during division cycles 4-6 and distributes nuclei in a hollow ellipsoid underlying the cortex. This is followed by cortical migration, during cycles 7-10, which places the nuclei in a uniform monolayer at the cortex. Here we report that these two movements differ in their geometry, velocity, cell-cycle dependence, and protein synthesis requirement. We therefore conclude that axial expansion and cortical migration are mechanistically distinct, amplifying a similar conclusion based on pharmacological data (Zalokar and Erk, 1976). We have examined microtubule organization during cortical migration and find that a network of interdigitating microtubules connects the migrating nuclei. These anti-parallel microtubule arrays are observed between migrating nuclei and yolk nuclei located deeper in the embryo. These arrays are present during nuclear movement but break down when the nuclei are not moving. We propose that cortical migration is driven by microtubule-dependent forces that repel adjacent nuclei, leading to an expansion of the nuclear ellipsoid established by axial expansion.  相似文献   

4.
5.
Organization of the cytoskeleton in early Drosophila embryos   总被引:29,自引:21,他引:8       下载免费PDF全文
The cytoskeleton of early, non-cellularized Drosophila embryos has been examined by indirect immunofluorescence techniques, using whole mounts to visualize the cortical cytoplasm and sections to visualize the interior. Before the completion of outward nuclear migration at nuclear cycle 10, both actin filaments and microtubules are concentrated in a uniform surface layer a few micrometers deep, while a network of microtubules surrounds each of the nuclei in the embryo interior. These two filament-rich regions in the early embryo correspond to special regions of cytoplasm that tend to exclude cytoplasmic particles in light micrographs of histological sections. After the nuclei in the interior migrate to the cell surface and form the syncytial blastoderm, each nucleus is seen to be surrounded by its own domain of filament-rich cytoplasm, into which the cytoskeletal proteins of the original surface layer have presumably been incorporated. At interphase, the microtubules seem to be organized from the centrosome directly above each nucleus, extending to a depth of at least 40 microns throughout the cortical region of cytoplasm (the periplasm). During this stage of the cell cycle, there is also an actin "cap" underlying the plasma membrane immediately above each nucleus. As each nucleus enters mitosis, the centrosome splits and the microtubules are rearranged to form a mitotic spindle. The actin underlying the plasma membrane spreads out, and closely spaced adjacent spindles become separated by transient membrane furrows that are associated with a continuous actin filament-rich layer. Thus, each nucleus in the syncytial blastoderm is surrounded by its own individualized region of the cytoplasm, despite the fact that it shares a single cytoplasmic compartment with thousands of other nuclei.  相似文献   

6.
In early development, Drosophila melanogaster embryos form a syncytium, i.e., multiplying nuclei are not yet separated by cell membranes, but are interconnected by cytoskeletal polymer networks consisting of actin and microtubules. Between division cycles 9 and 13, nuclei and cytoskeleton form a two-dimensional cortical layer. To probe the mechanical properties and dynamics of this self-organizing pre-tissue, we measured shear moduli in the embryo by high-speed video microrheology. We recorded position fluctuations of injected micron-sized fluorescent beads with kHz sampling frequencies and characterized the viscoelasticity of the embryo in different locations. Thermal fluctuations dominated over nonequilibrium activity for frequencies between 0.3 and 1000 Hz. Between the nuclear layer and the yolk, the cytoplasm was homogeneous and viscously dominated, with a viscosity three orders of magnitude higher than that of water. Within the nuclear layer we found an increase of the elastic and viscous moduli consistent with an increased microtubule density. Drug-interference experiments showed that microtubules contribute to the measured viscoelasticity inside the embryo whereas actin only plays a minor role in the regions outside of the actin caps that are closely associated with the nuclei. Measurements at different stages of the nuclear division cycle showed little variation.  相似文献   

7.
This paper describes a new recessive maternal lethal which disrupts normal nuclear division and migration during cleavage in Drosophila. We have named this gene locus supernova. Deletion mapping and in situ hybridization have located this gene to 88 F9/89 A1 on the polytene chromosome map. The terminal mutant phenotype is characterized by the presence of many variable-sized nuclei scattered throughout the cytoplasm of the unhatched egg. Following fertilization, the initial cleavage divisions appear delayed and are often accompanied by the formation of ring-like association of chromosomes and/or chromosome bridges. Although the polymerization of tubulin into spindles occurs during the initial cleavage divisions, there appears to be both a spatial and temporal uncoupling of DNA replication from the formation and proper functioning of spindles. Eventually no functional spindles are formed, but nuclei continue to increase in size and number with increasing age of the embryo following fertilization.  相似文献   

8.
9.
The maternal effect gene swallow ( swa) of Drosophila is required for bicoid and htsN4 mRNA localization during oogenesis. Swallow is also required for additional, poorly understood, functions in early embryogenesis. We have examined the cytoskeleton in swa mutant oocytes and embryos by immunocytochemistry and confocal microscopy. Mid- and late-stage swaoocytes have defective cytoplasmic actin networks. Stage-10 oocytes have solid actin clumps and hollow actin spheres in the subcortical layer, and late-stage oocytes have uniformly distributed hollow actin spheres in the subcortical layer and in deeper cytoplasm. Swa preblastoderm embryos have uneven and irregularly distributed actin at the cortex, and defective subcortical actin networks that contain hollow and solid spheres. In swa syncytial blastoderm embryos, the abnormal actin cytoskeleton is associated with defects in nuclear distribution, migration and cleavage. Actin cytoskeletal defects correlate with spindle defects, suggesting that the abnormal organization of the actin cytoskeleton allows interaction of mitotic spindles, which induces defective nuclear divisions and loss of nuclei from the surface of the embryo.  相似文献   

10.
《The Journal of cell biology》1995,129(6):1575-1588
The 95F myosin, a class VI unconventional myosin, associates with particles in the cytoplasm of the Drosophila syncytial blastoderm and is required for the ATP- and F-actin-dependent translocation of these particles. The particles undergo a cell cycle-dependent redistribution from domains that surround each nucleus in interphase to transient membrane invaginations that provide a barrier between adjacent spindles during mitosis. When 95F myosin function is inhibited by antibody injection, profound defects in syncytial blastoderm organization occur. This disorganization is seen as aberrant nuclear morphology and position and is suggestive of failures in cytoskeletal function. Nuclear defects correlate with gross defects in the actin cytoskeleton, including indistinct actin caps and furrows, missing actin structures, abnormal spacing of caps, and abnormally spaced furrows. Three- dimensional examination of embryos injected with anti-95F myosin antibody reveals that actin furrows do not invaginate as deeply into the embryo as do normal furrows. These furrows do not separate adjacent mitoses, since microtubules cross over them. These inappropriate microtubule interactions lead to aberrant nuclear divisions and to the nuclear defects observed. We propose that 95F myosin function is required to generate normal actin-based transient membrane furrows. The motor activity of 95F myosin itself and/or components within the particles transported to the furrows by 95F myosin may be required for normal furrows to form.  相似文献   

11.
Huang BQ  Sheridan WF 《The Plant cell》1996,8(8):1391-1407
The indeterminate gametophyte1 mutation in maize has been known to disrupt development of the female gametophyte. Mutant embryo sacs have abnormal numbers and behavior of micropylar and central cell nuclei, which result in polyembryony and elevated ploidy levels in the endosperm of developing kernels. In this study, we confirm abnormal nuclear behavior and present novel findings. In contrast to the normal form, there is no obvious polarity in two-nucleate embryo sacs or in the micropylar cells of eight-nucleate embryo sacs. We show that the second and third mitoses are not fully synchronized and that additional mitoses can occur in all of the nuclei of the mutant embryo sac or in just the micropylar or central regions. After cellularization, individual micropylar cells can undergo mitosis. Abnormal microtubular behavior results in irregular positioning of the nuclei, asynchronous microtubular patterns in different pairs of nuclei, and abnormal phragmoplasts after the third mitotic division. These results indicate that in addition to acting primarily in controlling nuclear divisions, the indeterminate gametophyte1 gene acts secondarily in regulating microtubule behavior. This cytoskeletal activity most likely controls the polarization and nuclear migration underlying the formation and fate of the cells of the normal embryo sac.  相似文献   

12.
An immunocytochemical method using a specific monoclonal antibody was employed to detect DNA polymerase alpha in Drosophila melanogaster embryos during the first 13 nuclear division cycles after fertilization. The anti-DNA polymerase alpha antibody stained the ooplasm of the unfertilized egg, indicating that DNA polymerase alpha is maternally stored. Strong nuclear staining with the antibody over the weaker staining of the cytoplasm was observed at interphase throughout the 13 nuclear division cycles. The staining of the cytoplasmic regions surrounding the nucleus was much stronger than the other region of the syncytial cytoplasm until cycle 10. Although prophase nuclei were stained with the antibody, metaphase chromosomes were never stained throughout the 13 cycles. The chromosomal (nuclear) staining reappeared at anaphase until cycle 11 and at telophase in later cycles. The staining of the syncytial cytoplasm except for the cortical region became faint by cycle 13, suggesting the consumption of the maternal storage by this cycle. These results suggest that DNA polymerase alpha dissociates from chromosomes at the beginning of metaphase; then in later mitotic phases, it is transported from the syncytial cytoplasm into nuclei to participate in formation of the active DNA replication enzyme complex.  相似文献   

13.
Mitogen-activated protein kinases (MAPKs) are ubiquitous phosphorylation enzymes involved in signal transduction, gene expression and activation of diverse cytoskeletal proteins. MAPKs participate in the regulation of a broad range of crucial cellular processes including cell survival, division, polarization, stress responses, and metabolism. Phosphorylation of cytoskeletal proteins usually results in the rearrangement of cytoskeletal arrays leading to morphological changes and cell polarization. On the other hand, some cytoskeletal motor proteins, such as kinesins, could activate MAPK members and participate in signal delivery to the proper cellular destination (e.g. during cell division). Moreover, changes in the integrity of cytoskeletal elements have direct impacts on MAPK activity. Recent evidence suggests that there is bi-directional signalling between MAPK cascades and cytoskeleton. The focus here is on this cross-talk between MAPK signalling and the cytoskeleton in various eukaryotic systems including yeast, plants, and mammals and a role is proposed for MAPKs as sensors monitoring the cytoskeleton-dependent balance of forces within the cell.  相似文献   

14.
Maternally contributed cyclin A and B proteins are initially distributed uniformly throughout the syncytial Drosophila embryo. As dividing nuclei migrate to the cortex of the embryo, the A and B cyclins become concentrated in surface layers extending to depths of approximately 30-40 microns and 5-10 microns, respectively. The initiation of nuclear envelope breakdown, spindle formation, and the initial congression of the centromeric regions of the chromosomes onto the metaphase plate all take place within the surface layer occupied by cyclin B on the apical side of the blastoderm nuclei. Cyclin B is seen mainly, but not exclusively, in the vicinity of microtubules throughout the mitotic cycle. It is most conspicuous around the centrosomes. Cyclin A is present at its highest concentrations throughout the cytoplasm during the interphase periods of the blastoderm cycles, although weak punctate staining can also be detected in the nucleus. It associates with the condensing chromosomes during prophase, segregates into daughter nuclei in association with chromosomes during anaphase, to redistribute into the cytoplasm after telophase. In contrast to the cycles following cellularization, neither cyclin is completely degraded upon the metaphase-anaphase transition.  相似文献   

15.
Embryonic development in Drosophila melanogaster begins with a rapid series of mitotic nuclear divisions, unaccompanied by cytokinesis, to produce a multi-nucleated single cell embryo, the syncytial blastoderm. The syncytium then undergoes a process of cell formation, in which the individual nuclei become enclosed in individual cells. This process of cellularization involves integrating mechanisms of cell polarity, cell-cell adhesion and a specialized form of cytokinesis. The detailed molecular mechanism, however, is highly complex and, despite extensive analysis, remains poorly understood. Nevertheless, new insights are emerging from recent studies on aspects of membrane polarization and insertion, which show that membrane components from intracellular organelles are involved. In addition, actin and actin-associated proteins have been heavily implicated while new evidence shows that microtubule cytoskeletal elements are mechanistically involved in all aspects of cellularization. This review will draw on both the traditional models and the new data to provide a current perspective on the nature of cellular blastoderm formation in Drosophila melanogaster.  相似文献   

16.
A new cell-level finite element formulation is presented and used to investigate how epithelia and other planar collections of viscous cells might deform during events such as embryo morphogenesis and wound healing. Forces arising from cytoskeletal components, cytoplasm viscosity, and cell-cell adhesions are included. Individual cells are modeled using multiple finite elements, and cell rearrangements can occur. Simulations of cell-sheet stretching indicate that the initial stages of sheet stretching are characterized by changes in cell shape, while subsequent stages are governed by cell rearrangement. Inferences can be made from the simulations about the forces that act in real cell sheets when suitable experimental data are available.  相似文献   

17.
Drosophila melanogaster embryogenesis begins with 13 nuclear division cycles within a syncytium. This produces >6,000 nuclei that, during the next division cycle, become encased in plasma membrane in the process known as cellularization. In this study, we investigate how the secretory membrane system becomes equally apportioned among the thousands of syncytial nuclei in preparation for cellularization. Upon nuclear arrival at the cortex, the endoplasmic reticulum (ER) and Golgi were found to segregate among nuclei, with each nucleus becoming surrounded by a single ER/Golgi membrane system separate from adjacent ones. The nuclear-associated units of ER and Golgi across the syncytial blastoderm produced secretory products that were delivered to the plasma membrane in a spatially restricted fashion across the embryo. This occurred in the absence of plasma membrane boundaries between nuclei and was dependent on centrosome-derived microtubules. The emergence of secretory membranes that compartmentalized around individual nuclei in the syncytial blastoderm is likely to ensure that secretory organelles are equivalently partitioned among nuclei at cellularization and could play an important role in the establishment of localized gene and protein expression patterns within the early embryo.  相似文献   

18.
Development of the female gametophyte involves several rounds of nuclear divisions during which nuclei are rearranged and finally cellularized to form a mature seven-celled embryo sac. During these nuclear divisions, key proteins involved in the cell cycle need to be degraded quickly in order to facilitate both the metaphase-anaphase transition stage and late anaphase. Here, we report the characterization of an Arabidopsis mutant nomega, which results in arrest of the embryo sac development at the two-nucleate stage. The NOMEGA gene product shows high homology to the APC6/cell division cycle (CDC)16 subunit of the Anaphase Promoting Complex/Cyclosome (APC/C). The phenotype of the nomega mutant is quite different from that of the hobbit mutant, which had suggested a role for the plant APC/C in auxin signalling. We show that nomega mutant embryo sacs are unable to degrade Cyclin B, an important APC/C substrate, providing further evidence of a role for the NOMEGA gene product and the plant APC/C in cell cycle progression during gametophyte development.  相似文献   

19.
During early seed development, nuclear divisions in the endosperm are not followed by cell division, leading to the development of a syncytium. The simple organization of the Arabidopsis endosperm provides a model in which to study the regulation of the cell cycle in relation to development. To monitor nuclear divisions, we constructed a HISTONE 2B::YELLOW FLUORESCENT PROTEIN gene fusion (H2B::YFP). To validate its use as a vital marker for chromatin in plants, H2B::YFP was expressed constitutively in Arabidopsis. This enabled the observation of mitoses in living root meristems. H2B::YFP was expressed specifically in Arabidopsis syncytial endosperm by using GAL4 transactivation. Monitoring mitotic activity in living syncytial endosperm showed that the syncytium was organized into three domains in which nuclei divide simultaneously with a specific time course. Each mitotic domain has a distinct spatiotemporal pattern of mitotic CYCLIN B1;1 accumulation. The polar spatial organization of the three mitotic domains suggests interactions between developmental mechanisms and the regulation of the cell cycle.  相似文献   

20.
daughterless-abo-like (dal) is a maternal-effect semilethal mutation in Drosophila. The nuclear divisions of embryos derived from homozygous dal females are normal through nuclear cycle 10. However, during nuclear cycles 11, 12 and 13, a total of about half of the nuclei in each embryo either fail to divide or fuse with a neighboring nucleus during telophase. These abnormal nuclei eventually sink into the interior of the embryo, leaving their centrosomes behind on the surface. The loss of about one-half of the peripheral nuclei into the interior of the embryo results in these embryos cellularizing during nuclear cycle 14 with about one-half the normal number of cells. Surprisingly, many of these embryos develop a nearly normal larval cuticle and 8% develop to adulthood. Observations of live embryos doubly injected with tubulin and histones that have been fluorescently labeled allows nuclear and centrosomal behavior to be directly followed as the embryo develops. We find that the abnormal nuclei arise from nuclei whose centrosomes have failed to separate normally in the previous interphase. These incompletely separated centrosomes can cause a non-functional spindle to form, leading to a nuclear division failure. Alternatively, they can form an abnormal spindle with a centrosome from a neighboring nucleus, causing two nuclei to share a common spindle pole. Such nuclei with a shared centrosome will undergo telophase fusions, unequal divisions, or division failures later in mitosis. These findings have helped us to understand the function of the centrosome in the Drosophila embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号