首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ezrin/radixin/moesin (ERM) proteins are involved in actin filament/plasma membrane interaction that is regulated by Rho. We examined whether ERM proteins are directly phosphorylated by Rho- associated kinase (Rho-kinase), a direct target of Rho. Recombinant full-length and COOH-terminal half radixin were incubated with constitutively active catalytic domain of Rho-kinase, and ~30 and ~100% of these molecules, respectively, were phosphorylated mainly at the COOH-terminal threonine (T564). Next, to detect Rho-kinase–dependent phosphorylation of ERM proteins in vivo, we raised a mAb that recognized the T564-phosphorylated radixin as well as ezrin and moesin phosphorylated at the corresponding threonine residue (T567 and T558, respectively). Immunoblotting of serum-starved Swiss 3T3 cells with this mAb revealed that after LPA stimulation ERM proteins were rapidly phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in a Rho-dependent manner and then dephosphorylated within 2 min. Furthermore, the T564 phosphorylation of recombinant COOH-terminal half radixin did not affect its ability to bind to actin filaments in vitro but significantly suppressed its direct interaction with the NH2-terminal half of radixin. These observations indicate that the Rho-kinase–dependent phosphorylation interferes with the intramolecular and/ or intermolecular head-to-tail association of ERM proteins, which is an important mechanism of regulation of their activity as actin filament/plasma membrane cross-linkers.  相似文献   

2.
Ezrin is a membrane-cytoskeleton linker protein that can bind F-actin in its active conformation. Several means of regulation of ezrin's activity have been described including phosphorylation of Thr-567 and binding of L-α-phosphatidylinositol-4,5-bisphosphate (PIP2). However, the relative contributions of these events toward activation of the protein and their potential interdependence are not known. We developed an assay based on solid-supported membranes, to which different ezrin mutants (ezrin T567A (inactive mutant), wild-type, and T567D (active pseudophosphorylated mutant)) were bound, that enabled us to analyze the influence of phosphorylation and PIP2 binding on ezrin's activation state in vitro. The lipid bilayers employed contained either DOGS-NTA-Ni to bind the proteins via an N-terminal His-tag, or PIP2, to which ezrin binds via specific binding sites located in the N-terminal region of the protein. Quantitative analysis of the binding behavior of all three proteins to the two different receptor lipids revealed that all three bind with high affinity and specificity to the two receptor lipids. Fluorescence microscopy on ezrin-decorated solid-supported membranes showed that, dependent on the mode of binding and the phosphorylation state, ezrin is capable of binding actin filaments. A clear synergism between phosphorylation and the receptor lipid PIP2 was observed, suggesting a conformational switch from the dormant to the active, F-actin binding state by recognition of PIP2, which is enhanced by the phosphorylation.  相似文献   

3.
The plasma membrane-cytoskeleton interface is a dynamic structure participating in a variety of cellular events. Among the proteins involved in the direct linkage between the cytoskeleton and the plasma membrane is the ezrin/radixin/moesin (ERM) family. The FERM (4.1 ezrin/radixin/moesin) domain in their N-terminus contains a phosphatidylinositol 4,5 bisphosphate (PIP2) (membrane) binding site whereas their C-terminus binds actin. In this work, our aim was to quantify the interaction of ezrin with large unilamellar vesicles (LUVs) containing PIP2. For this purpose, we produced human recombinant ezrin bearing a cysteine residue at its C-terminus for subsequent labeling with Alexa488 maleimide. The functionality of labeled ezrin was checked by comparison with that of wild-type ezrin. The affinity constant between ezrin and LUVs was determined by cosedimentation assays and fluorescence correlation spectroscopy. The affinity was found to be ∼5 μM for PIP2-LUVs and 20-to 70-fold lower for phosphatidylserine-LUVs. These results demonstrate, as well, that the interaction between ezrin and PIP2-LUVs is not cooperative. Finally, we found that ezrin FERM domain (area of ∼30 nm2) binding to a single PIP2 can block access to neighboring PIP2 molecules and thus contributes to lower the accessible PIP2 concentration. In addition, no evidence exists for a clustering of PIP2 induced by ezrin addition.  相似文献   

4.
Direct linkage between the plasma membrane and the actin cytoskeleton is controlled by the protein ezrin, a member of the ezrin-radixin-moesin protein family. To function as a membrane-cytoskeleton linker, ezrin needs to be activated in a process that involves binding of ezrin to phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphorylation of a conserved threonine residue. Here, we used colloidal probe microscopy to quantitatively analyze the interaction between ezrin and F-actin as a function of these activating factors. We show that the measured individual unbinding forces between ezrin and F-actin are independent of the activating parameters, in the range of approximately 50 piconewtons. However, the cumulative adhesion energy greatly increases in the presence of PIP2 demonstrating that a larger number of bonds between ezrin and F-actin has formed. In contrast, the phosphorylation state, represented by phosphor-mimetic mutants of ezrin, only plays a minor role in the activation process. These results are in line with in vivo experiments demonstrating that an increase in PIP2 concentration recruits more ezrin to the apical plasma membrane of polarized cells and significantly increases the membrane tension serving as a measure of the adhesion sites between the plasma membrane and the F-actin network.  相似文献   

5.
Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP2. Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP2 binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP2 binding. The study provides the first structural view of the activated ezrin bound to PIP2 and to F-actin.  相似文献   

6.
Upon engagement by its ligand, the Fas receptor (CD95/APO-1) is oligomerized in a manner dependent on F-actin. It has been shown that ezrin, a member of the ERM (ezrin-radixin-moesin) protein family can link Fas to the actin cytoskeleton. We show herein that in Jurkat cells, not only ezrin but also moesin can associate with Fas. The same observation was made in activated human peripheral blood T cells. Fas/ezrin or moesin (E/M) association increases in Jurkat cells following Fas triggering and occurs concomitantly with the formation of SDS- and 2-ME-stable high molecular mass Fas aggregates. Ezrin and moesin have to be present together for the formation of Fas aggregates since down-regulation of either ezrin or moesin expression with small interfering RNAs completely inhibits Fas aggregate formation. Although FADD (Fas-associated death domain protein) and caspase-8 associate with Fas in the absence of E/M, subsequent events such as caspase-8 activation and sensitivity to apoptosis are decreased. During the course of Fas stimulation, ezrin and moesin become phosphorylated, respectively, on T567 and on T558. This phosphorylation is mediated by the kinase ROCK (Rho-associated coiled coil-containing protein kinase) I subsequently to Rho activation. Indeed, inhibition of either Rho or ROCK prevents ezrin and moesin phosphorylation, abrogates the formation of Fas aggregates, and interferes with caspase-8 activation. Thus, phosphorylation of E/M by ROCK is involved in the early steps of apoptotic signaling following Fas triggering and regulates apoptosis induction.  相似文献   

7.
When we were studying phosphorylated proteins in the rat brain after electroconvulsive shock (ECS), we observed the rapid phosphorylation of a 75-kDa protein, which cross-reacted with the anti-phospho-p70 S6 kinase antibody. The phosphorylated protein was purified and identified as moesin, a member of the ezrin/radixin/moesin (ERM) family and a general cross-linker between cortical actin filaments and plasma membranes. The purified moesin from rat brain was phosphorylated at serine and threonine residues. Moesin was rapidly phosphorylated at the threonine 558 residue after ECS in the rat hippocampus, peaked at 1 min, and returned to the basal level by 2 min after ECS. To investigate the mechanism of moesin phosphorylation in neuronal cells, we stimulated a rat hippocampal progenitor cell, H19-7/IGF-IR, with glutamate, and observed the increased phosphorylation of moesin at Thr-558. Glutamate transiently activated RhoA, and constitutively active RhoA increased the basal level phosphorylation of moesin. The inhibition of RhoA and its effector, Rho kinase, abolished increased Thr-558 phosphorylation by glutamate in H19-7/IGF-IR cells, suggesting that the phosphorylation of moesin at Thr-558 in H19-7/IGF-IR cells by glutamate is mediated by RhoA and Rho kinase activation.  相似文献   

8.
Hypotonicity-induced cell swelling is characterized by a modification in cell architecture associated with actin cytoskeleton remodeling. The ezrin/radixin/moesin (ERM) family proteins are important signal transducers during actin reorganization regulated by the monomeric G proteins of the Rho family. We report here that in collecting duct CD8 cells hypotonicity-induced cell swelling resulted in deep actin reorganization, consisting of loss of stress fibers and formation of F-actin patches in membrane protrusions where the ERM protein moesin was recruited. Cell swelling increased the interaction between actin and moesin and induced the transition of moesin from an oligomeric to a monomeric functional conformation, characterized by both the COOH- and NH2-terminal domains being exposed. In this conformation, which is stabilized by phosphorylation of a conserved threonine in the COOH-terminal domain by PKC or Rho kinase, moesin can bind interacting proteins. Interestingly, hypotonic stress increased the amount of threonine-phosphorylated moesin, which was prevented by the PKC- inhibitor Gö-6976 (50 nM). In contrast, the Rho kinase inhibitor Y-27632 (1 µM) did not affect the hypotonicity-induced increase in phosphorylated moesin. The present data represent the first evidence that hypotonicity-induced actin remodeling is associated with phosphorylated moesin recruitment at the cell border and interaction with actin. ezrin/radixin/moesin; protein kinase C; Rho  相似文献   

9.
Biomimetic systems such as giant unilamellar vesicles (GUVs) are increasingly used for studying protein/lipid interactions due to their size (similar to that of cells) and to their ease of observation by light microscopy techniques. Biophysicists have begun to complexify GUVs to investigate lipid/protein interactions. In particular, composite GUVs have been designed that incorporate lipids that play important physiological roles in cellulo, such as phosphoinositides and among those the most abundant one, phosphatidylinositol(4,5)bisphosphate (PIP2). Fluorescent lipids are often used as tracers to observe GUV membranes by microscopy but they can not bring quantitative information about the insertion of unlabeled lipids. In this study, we carried out ζ-potential measurements to prove the effective incorporation of PIP2 as well as that of phosphatidylserine in the membrane of GUVs prepared by electroformation and to follow the stability of PIP2-containing GUVs. Using confocal microscopy, we found that long-chain (C16) fluorescent PIP2 analogs used as tracers (0.1% of total lipids) show a uniform distribution in the membrane whereas PIP2 antibodies show PIP2 clustering. However, the clustering effect, which is emphasized when tertiary antibodies are used in addition to secondary ones to enhance the size of the detection complex, is artifactual. We showed that divalent ions (Ca2+ and Mg2+) can induce aggregation of PIP2 in the membrane depending on their concentration. Finally, the interaction of ezrin with PIP2-containing GUVs was investigated. Using either labeled ezrin and unlabeled GUVs or both labeled ezrin and GUVs, we showed that clusters of PIP2 and proteins are formed.  相似文献   

10.
Mutations in the LRRK2 (leucine-rich repeat kinase-2) gene cause late-onset PD (Parkinson's disease). LRRK2 contains leucine-rich repeats, a GTPase domain, a COR [C-terminal of Roc (Ras of complex)] domain, a kinase and a WD40 (Trp-Asp 40) motif. Little is known about how LRRK2 is regulated, what its physiological substrates are or how mutations affect LRRK2 function. Thus far LRRK2 activity has only been assessed by autophosphorylation and phosphorylation of MBP (myelin basic protein), which is catalysed rather slowly. We undertook a KESTREL (kinase substrate tracking and elucidation) screen in rat brain extracts to identify proteins that were phosphorylated by an activated PD mutant of LRRK2 (G2019S). This led to the discovery that moesin, a protein which anchors the actin cytoskeleton to the plasma membrane, is efficiently phosphorylated by LRRK2, at Thr558, a previously identified in-vivo-phosphorylation site that regulates the ability of moesin to bind actin. LRRK2 also phosphorylated ezrin and radixin, which are related to moesin, at the residue equivalent to Thr558, as well as a peptide (LRRKtide: RLGRDKYKTLRQIRQ) encompassing Thr558. We exploited these findings to determine how nine previously reported PD mutations of LRRK2 affected kinase activity. Only one of the mutations analysed, namely G2019S, stimulated kinase activity. Four mutations inhibited LRRK2 kinase activity (R1941H, I2012T, I2020T and G2385R), whereas the remainder (R1441C, R1441G, Y1699C and T2356I) did not influence activity. Therefore the manner in which LRRK2 mutations induce PD is more complex than previously imagined and is not only caused by an increase in LRRK2 kinase activity. Finally, we show that the minimum catalytically active fragment of LRRK2 requires an intact GTPase, COR and kinase domain, as well as a WD40 motif and a C-terminal tail. The results of the present study suggest that moesin, ezrin and radixin may be LRRK2 substrates, findings that have been exploited to develop the first robust quantitative assay to measure LRRK2 kinase activity.  相似文献   

11.
Mechanisms controlling the disassembly of ezrin/radixin/moesin (ERM) proteins, which link the cytoskeleton to the plasma membrane, are incompletely understood. In lymphocytes, chemokine (e.g., SDF-1) stimulation inactivates ERM proteins, causing their release from the plasma membrane and dephosphorylation. SDF-1–mediated inactivation of ERM proteins is blocked by phospholipase C (PLC) inhibitors. Conversely, reduction of phosphatidylinositol 4,5-bisphosphate (PIP2) levels by activation of PLC, expression of active PLC mutants, or acute targeting of phosphoinositide 5-phosphatase to the plasma membrane promotes release and dephosphorylation of moesin and ezrin. Although expression of phosphomimetic moesin (T558D) or ezrin (T567D) mutants enhances membrane association, activation of PLC still relocalizes them to the cytosol. Similarly, in vitro binding of ERM proteins to the cytoplasmic tail of CD44 is also dependent on PIP2. These results demonstrate a new role of PLCs in rapid cytoskeletal remodeling and an additional key role of PIP2 in ERM protein biology, namely hydrolysis-mediated ERM inactivation.  相似文献   

12.
The small G protein RhoA and its GDP/GTP exchange factors (GEFs) Net and Dbl can transform NIH 3T3 fibroblasts, dependent on the activity of the RhoA effector kinase ROCK. We investigated the role of the cytoskeletal linker protein ezrin in this process. RhoA effector loop mutants which can bind ROCK induce relocalization of ezrin to dorsal actin-containing cell surface protrusions, as do Net and Dbl. Both processes are inhibited by the ROCK inhibitor Y27632, which also inhibits association of ezrin with the cytoskeleton, and phosphorylation of T567, conserved between ezrin and its relatives radixin and moesin. ROCK can phosphorylate the ezrin C-terminus in vitro. The ezrin mutant T567A cannot be relocalized by activated RhoA, Net or Dbl or by ROCK itself, and also inhibits RhoA-mediated contractility and focal adhesion formation. Moreover, ezrin T567A, but not wild-type ezrin, restores contact inhibition to Net- and Dbl-transformed cells, and inhibits the activity of Net and Ras in focus formation assays. These results implicate ROCK-mediated ezrin C-terminal phosphorylation in transformation by RhoGEFs.  相似文献   

13.
Point and deletion mutants of moesin were examined for F-actin binding by blot overlay and co-sedimentation, and for intra- and intermolecular interactions with N- and C-terminal domains with yeast two-hybrid and in vitro binding assays. Wild-type moesin molecules interact poorly with F-actin and each other, and bind neither C- nor N-terminal fragments. Interaction with F-actin is strongly enhanced by replacement of Thr558 with aspartate (T558D), by deletion of 11 N-terminal residues (DelN11), by deletion of the entire N-terminal membrane-binding domain of both wild type and T558D mutant molecules, and by exposure to phosphatidylinositol 4, 5-diphosphate. Activation of F-actin binding is accompanied by changes in inter- and intramolecular domain interactions. The T558D mutation renders moesin capable of binding wild type but not mutated (T558D) C-terminal or wild type N-terminal fragments. The interaction between the latter two is prevented. DelN11 truncation enables binding of wild type N and C domain fragments. These changes suggest that the T558D mutation, mimicking phosphorylation of Thr558, promotes F-actin binding by disruption of interdomain interactions between N and C domains and exposure of the high affinity F-actin binding site in the C-terminal domain. Oscillation between activated and resting state could thus provide the structural basis for transient interactions between moesin and the actin cytoskeleton in protruding and retracting microextensions.  相似文献   

14.
In its dormant state, the membrane cytoskeletal linker protein ezrin takes on a NH2 terminal-to-COOH terminal (N-C) binding conformation. In vitro evidence suggests that eliminating the N-C binding conformation by Thr567 phosphorylation leads to ezrin activation. Here, we found for resting gastric parietal cells that the levels of ezrin phosphorylation on Thr567 are low and can be increased to a small extent (40%) by stimulating secretion via the cAMP pathway. Treatment of cells with protein phosphatase inhibitors led to a rapid, dramatic increase in Thr567 phosphorylation by 400% over resting levels, prompting the hypothesis that ezrin activity is regulated by turnover of phosphorylation on Thr567. In vitro and in vivo fluorescence resonance energy transfer analysis demonstrated that Thr567 phosphorylation opens the N-C interaction. However, even in the closed conformation, ezrin localizes to membranes by an exposed NH2 terminal binding site. Importantly, the opened phosphorylated form of ezrin more readily cosediments with F-actin and binds more tightly to membrane than the closed forms. Furthermore, fluorescence recovery after photobleaching analysis in live cells showed that the Thr567Asp mutant had longer recovery times than the wild type or the Thr567Ala mutant, indicating the Thr567-phosphorylated form of ezrin is tightly associated with F-actin and the membrane, restricting normal activity. These data demonstrate and emphasize the functional importance of reversible phosphorylation of ezrin on F-actin binding. A novel model is proposed whereby ezrin and closely associated kinase and phosphatase proteins represent a motor complex to maintain a dynamic relationship between the varying membrane surface area and filamentous actin length. ezrin/radixin/moesin protein; motor complex; gastric parietal cell; fluorescence resonance energy transfer; fluorescence recovery after photobleaching  相似文献   

15.
We have previously reported that the epithelial cell-specific actin-binding protein villin directly associates with phosphatidylinositol 4,5-bisphosphate (PIP2) through three binding sites that overlap with actin-binding sites in villin. As a result, association of villin with PIP2 in hibits actin depolymerization and enhances actin cross-linking by villin. In this study, we demonstrate that these three PIP2-binding sites also bind the more hydrophilic phospholipid, lysophosphatidic acid (LPA) but with a higher affinity than PIP2 (dissociation constant (Kd) of 22 μm versus 39.5 μm for PIP2). More interestingly, unlike PIP2, the association of villin with LPA inhibits all actin regulatory functions of villin. In addition, unlike PIP2, LPA dramatically stimulates the tyrosine phosphorylation of villin by c-Src kinase. These studies suggest that in cells, selective interaction of villin with either PIP2 or LPA could have dramatically different outcomes on actin reorganization as well as phospholipid-regulated cell signaling. These studies provide a novel regulatory mechanism for phospholipid-induced changes in the microfilament structure and cell function and suggest that LPA could be an intracellular regulator of the actin cytoskeleton.  相似文献   

16.
Moesin is a member of ERM family proteins which act as the cross-linkers between plasma membrane and actin-cytoskeleton and is activated by phosphorylation at Thr-558. In neurons, suppression of radixin and moesin alters the growth cone morphology. However, the significance of phosphorylation of ERM proteins in neuronal cells has not been fully investigated. In this study, we studied the signaling pathways responsible for moesin phosphorylation and its functional importance in NGF-treated PC12 cells. NGF rapidly induced the phosphorylation of moesin at Thr-558 in PC12 cells which was dependent on PI3K and Rac1. We found that Akt interacted and phosphorylated with moesin both in vitro and in vivo. Inhibition of PI3K and Rac1 abolished the NGF-induced Akt activation, indicating that Akt is at the downstream of PI3K and Rac1. To examine the functional role of phosphorylated ERM proteins, a dominant negative mutant form of moesin (T558A) was introduced into PC12 cells. The mutant significantly reduced the frequency of cells with neurites following NGF treatment. Our results indicate that PI3K, Rac1 and Akt-dependent phosphorylation of moesin is required for the NGF-induced neurite formation in differentiating PC12 cells.  相似文献   

17.

Background

Ezrin/radixin/moesin (ERM) proteins are highly homologous proteins that function to link cargo molecules to the actin cytoskeleton. Ezrin and moesin are both expressed in mature lymphocytes, where they play overlapping roles in cell signaling and polarity, but their role in lymphoid development has not been explored.

Methodology/Principal Findings

We characterized ERM protein expression in lymphoid tissues and analyzed the requirement for ezrin expression in lymphoid development. In wildtype mice, we found that most cells in the spleen and thymus express both ezrin and moesin, but little radixin. ERM protein expression in the thymus was differentially regulated, such that ezrin expression was highest in immature thymocytes and diminished during T cell development. In contrast, moesin expression was low in early thymocytes and upregulated during T cell development. Mice bearing a germline deletion of ezrin exhibited profound defects in the size and cellularity of the spleen and thymus, abnormal thymic architecture, diminished hematopoiesis, and increased proportions of granulocytic precursors. Further analysis using fetal liver chimeras and thymic transplants showed that ezrin expression is dispensable in hematopoietic and stromal lineages, and that most of the defects in lymphoid development in ezrin−/− mice likely arise as a consequence of nutritional stress.

Conclusions/Significance

We conclude that despite high expression in lymphoid precursor cells, ezrin is dispensable for lymphoid development, most likely due to redundancy with moesin.  相似文献   

18.
ERM (ezrin, radixin, moesin) proteins act as linkers between the plasma membrane and the actin cytoskeleton. An interaction between their NH(2)- and COOH-terminal domains occurs intramolecularly in closed monomers and intermolecularly in head-to-tail oligomers. In vitro, phosphorylation of a conserved threonine residue (T567 in ezrin) in the COOH-terminal domain of ERM proteins disrupts this interaction. Here, we have analyzed the role of this phosphorylation event in vivo, by deriving stable clones producing wild-type, T567A, and T567D ezrin from LLC-PK1 epithelial cells. We found that T567A ezrin was poorly associated with the cytoskeleton, but was able to form oligomers. In contrast, T567D ezrin was associated with the cytoskeleton, but its distribution was shifted from oligomers to monomers at the membrane. Moreover, production of T567D ezrin induced the formation of lamellipodia, membrane ruffles, and tufts of microvilli. Both T567A and T567D ezrin affected the development of multicellular epithelial structures. Collectively, these results suggest that phosphorylation of ERM proteins on this conserved threonine regulates the transition from membrane-bound oligomers to active monomers, which induce and are part of actin-rich membrane projections.  相似文献   

19.
Rat Walker 256 carcinosarcoma cells spontaneously develop front-tail polarity and migrate in the absence of added stimuli. Constitutive activation of phosphatidylinositol-3 kinase (PI 3-kinase), Rac, Rho and Rho kinase are essential for these processes. Ezrin and moesin are putative targets of these signaling pathways leading to spontaneous migration. To test this hypothesis, we used specific siRNA probes that resulted in a downregulation of ezrin and moesin by about 70% and in a similar reduction in the fraction of migrating cells. Spontaneous polarization however was not affected, indicating a more subtle role of ezrin and moesin in migration. We provide furthermore evidence that endogenous ezrin and moesin colocalize with F-actin at the contracted tail of polarized cells, similar to ectopically expressed green fluorescent protein-tagged ezrin. Our results suggest that myosin light chain and ezrin are markers of front and tail, respectively, even in the absence of morphological polarization. We further show that endogenous ezrin and moesin are phosphorylated and that activities of PI-3 kinase, Rho and Rac, but not of Rho-kinase, are required for this C-terminal phosphorylation. Activation of protein kinase C in contrast suppressed phosphorylation of ezrin and moesin. Inhibition of ezrin phosphorylation prevented its membrane association.  相似文献   

20.
Voltage‐gated Kv7.2 potassium channels regulate neuronal excitability. The gating of these channels is tightly controlled by various mediators and neurotransmitters acting via G protein‐coupled receptors; the underlying signaling cascades involve phosphatidylinositol‐4,5‐bisphosphate (PIP2), Ca2+/calmodulin, and phosphorylation. Recent studies found that the PIP2 sensitivity of Kv7.2 channels is affected by two posttranslational modifications, phosphorylation and methylation, harboured within putative PIP2‐binding domains. In this study, we updated phosphorylation and methylation sites in Kv7.2 either heterologously expressed in mammalian cells or as GST‐fusion proteins exposed to recombinant protein kinases by using LC–MS/MS. In vitro kinase assays revealed that CDK5, protein kinase C (PKC) alpha, PKA, p38 MAPK, CamKIIα, and GSK3β could mediate phosphorylation. Taken together, we provided a comprehensive map of phosphorylation and methylation in Kv7.2 within protein–protein and protein–lipid interaction domains. This may help to interpret the functional roles of individual PTM sites in Kv7.2 channels. All MS data are available via ProteomeXchange with the identifier PXD005567.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号