首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A growing number of important molecular recognition events are being shown to involve the interactions between proteins and glycolipids. Glycolipids are molecules in which one or more monosaccharides are glycosidically linked to a lipid moiety. The lipid moiety is generally buried in the cell membrane or other bilayer, leaving the oligosaccharide moiety exposed but in close proximity to the bilayer surface. This presents a unique environment for protein–carbohydrate interactions, and studies to determine the influence of the bilayer on these phenomena are in their infancy. One important property of the bilayer is the ability to orient and cluster glycolipid species, as strong interactions in biological systems are often achieved through multivalency arising from the simultaneous association of two or more proteins and receptors. This is especially true of protein–carbohydrate binding because of the unusually low affinities that characterize the monovalent interactions. More recent studies have also shown that the composition of the lipid bilayer is a critical parameter in protein–glycolipid recognition. The fluidity of the bilayer allows for correct geometric positioning of the oligosaccharide head group relative to the binding sites on the protein. In addition, there are activity‐based and structural data demonstrating the impact of the bilayer microenvironment on the modulation of oligosaccharide presentation. The use of model membranes in biosensor‐based methods has supplied decisive evidence of the importance of the membrane in receptor presentation. These data can be correlated with three‐dimensional structural information from X‐ray <?tw=98%>crystallography, NMR, and molecular mechanics to provide insight into specific protein–carbohydrate inter‐­actions at the bilayer. Copyright © 1999 National Research Council Canada and John Wiley & Sons, Ltd.  相似文献   

2.
The molecular activity of Na,K-ATPase and other P2 ATPases like Ca2 +-ATPase is influenced by the lipid environment via both general (physical) and specific (chemical) interactions. Whereas the general effects of bilayer structure on membrane protein function are fairly well described and understood, the importance of the specific interactions has only been realized within the last decade due particularly to the growing field of membrane protein crystallization, which has shed new light on the molecular details of specific lipid–protein interactions. It is a remarkable observation that specific lipid–protein interactions seem to be evolutionarily conserved, and conformations of specifically bound lipids at the lipid–protein surface within the membrane are similar in crystal structures determined with different techniques and sources of the protein, despite the rather weak lipid–protein interaction energy. Studies of purified detergent-soluble recombinant αβ or αβFXYD Na,K-ATPase complexes reveal three separate functional effects of phospholipids and cholesterol with characteristic structural selectivity. The observations suggest that these three effects are exerted at separate binding sites for phophatidylserine/cholesterol (stabilizing), polyunsaturated phosphatidylethanolamine (stimulatory), and saturated PC or sphingomyelin/cholesterol (inhibitory), which may be located within three lipid-binding pockets identified in recent crystal structures of Na,K-ATPase. The findings point to a central role of direct and specific interactions of different phospholipids and cholesterol in determining both stability and molecular activity of Na,K-ATPase and possible implications for physiological regulation by membrane lipid composition. This article is part of a special issue titled “Lipid–Protein Interactions.”  相似文献   

3.
Ion channel conformational changes within the lipid membrane are a key requirement to control ion passage. Thus, it seems reasonable to assume that lipid composition should modulate ion channel function. There is increasing evidence that this implicates not just an indirect consequence of the lipid influence on the physical properties of the membrane, but also specific binding of selected lipids to certain protein domains. The result is that channel function and its consequences on excitability, contractility, intracellular signaling or any other process mediated by such channel proteins, could be subjected to modulation by membrane lipids. From this it follows that development, age, diet or diseases that alter lipid composition should also have an influence on those cellular properties. The wealth of data on the non-annular lipid binding sites in potassium channel from Streptomyces lividans (KcsA) makes this protein a good model to study the modulation of ion channel structure and function by lipids. The fact that this protein is able to assemble into clusters through the same non-annular sites, resulting in large changes in channel activity, makes these sites even more interesting as a potential target to develop lead compounds able to disrupt such interactions and hopefully, to modulate ion channel function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

4.
The insulin and insulin‐like growth factor 1 receptors activate overlapping signalling pathways that are critical for growth, metabolism, survival and longevity. Their mechanism of ligand binding and activation displays complex allosteric properties, which no mathematical model has been able to account for. Modelling these receptors’ binding and activation in terms of interactions between the molecular components is problematical due to many unknown biochemical and structural details. Moreover, substantial combinatorial complexity originating from multivalent ligand binding further complicates the problem. On the basis of the available structural and biochemical information, we develop a physically plausible model of the receptor binding and activation, which is based on the concept of a harmonic oscillator. Modelling a network of interactions among all possible receptor intermediaries arising in the context of the model (35, for the insulin receptor) accurately reproduces for the first time all the kinetic properties of the receptor, and provides unique and robust estimates of the kinetic parameters. The harmonic oscillator model may be adaptable for many other dimeric/dimerizing receptor tyrosine kinases, cytokine receptors and G‐protein‐coupled receptors where ligand crosslinking occurs.  相似文献   

5.
The purple membrane is a two-dimensional crystalline lattice formed by bacteriorhodopsin and lipid molecules in the cytoplasmic membrane of Halobacterium salinarum. High-resolution structural studies, in conjunction with detailed knowledge of the lipid composition, make the purple membrane one of the best models for elucidating the forces that are responsible for the assembly and stability of integral membrane protein complexes. In this review, recent mutational efforts to identify the structural features of bacteriorhodopsin that determine its assembly in the purple membrane are discussed in the context of structural, calorimetric and reconstitution studies. Quantitative evidence is presented that interactions between transmembrane helices of neighboring bacteriorhodopsin molecules contribute to purple membrane assembly. However, other specific interactions, particularly between bacteriorhodopsin and lipid molecules, may provide the major driving force for assembly. Elucidating the molecular basis of protein-protein and protein-lipid interactions in the purple membrane may provide insights into the formation of integral membrane protein complexes in other systems.  相似文献   

6.
Pentameric ligand-gated ion channels (pLGICs) are receptor proteins that are sensitive to their membrane environment, but the mechanism for how lipids modulate function under physiological conditions in a state dependent manner is not known. The glycine receptor is a pLGIC whose structure has been resolved in different functional states. Using a realistic model of a neuronal membrane coupled with coarse-grained molecular dynamics simulations, we demonstrate that some key lipid-protein interactions are dependent on the receptor state, suggesting that lipids may regulate the receptor’s conformational dynamics. Comparison with existing structural data confirms known lipid binding sites, but we also predict further protein-lipid interactions including a site at the communication interface between the extracellular and transmembrane domain. Moreover, in the active state, cholesterol can bind to the binding site of the positive allosteric modulator ivermectin. These protein-lipid interaction sites could in future be exploited for the rational design of lipid-like allosteric drugs.  相似文献   

7.
To maintain cell membrane homeostasis, lipids must be dynamically redistributed during the formation of transport intermediates, but the mechanisms driving lipid sorting are not yet fully understood. Lowering sphingolipid concentration can reduce the bending energy of a membrane, and this effect could account for sphingolipid depletion along the retrograde pathway. However, sphingolipids and cholesterol are enriched along the anterograde pathway, implying that other lipid sorting mechanisms, such as protein-mediated sorting, can dominate. To characterize the influence of protein binding on the lipid composition of highly curved membranes, we studied the interactions of the B-subunit of Shiga toxin (STxB) with giant unilamellar vesicles containing its glycosphingolipid receptor [globotriaosylceramide (Gb3)]. STxB binding induced the formation of tubular membrane invaginations, and fluorescence microscopy images of these highly curved membranes were consistent with co-enrichment of Gb3 and sphingolipids. In agreement with theory, sorting was stronger for membrane compositions close to demixing. These results strongly support the hypothesis that proteins can indirectly mediate the sorting of lipids into highly curved transport intermediates via interactions between lipids and the membrane receptor of the protein.  相似文献   

8.
All molecular interactions that are relevant to cellular and molecular structures are electrical in nature but manifest in a rich variety of forms that each has its own range and influences on the net effect of how molecular species interact. This article outlines how electrical interactions between the protein and lipid membrane components underlie many of the activities of membrane function. Particular emphasis is placed on spatially localised behaviour in membranes involving modulation of protein activity and microdomain structure.The interactions between membrane lipids and membrane proteins together with their role within cell biology represent an enormous body of work. Broad conclusions are not easy given the complexities of the various systems and even consensus with model membrane systems containing two or three lipid types is difficult. By defining two types of broad lipid–protein interaction, respectively Type I as specific and Type II as more non-specific and focussing on the electrical interactions mostly in the extra-membrane regions it is possible to assemble broad rules or a consensus of the dominant features of the interplay between these two fundamentally important classes of membrane component. This article is part of a special issue entitled: Lipid–protein interactions.  相似文献   

9.
The assembly of most retroviruses occurs at the plasma membrane. Membrane association is directed by MA, the N-terminal domain of the Gag structural protein. For human immunodeficiency virus type 1 (HIV-1), this association is mediated in part by a myristate fatty acid modification. Conflicting evidence has been presented on the relative importance of myristoylation, of ionic interactions between protein and membrane, and of Gag multimerization in membrane association in vivo. We addressed these questions biochemically by determining the affinity of purified myristoylated HIV-1 MA for liposomes of defined composition, both for monomeric and for dimeric forms of the protein. Myristoylation increases the barely detectable intrinsic affinity of the apo-protein for liposomes by only 10-fold, and the resulting affinity is still weak, similar to that of the naturally nonmyristoylated MA of Rous sarcoma virus. Membrane binding of HIV-1 MA is absolutely dependent on the presence of negatively charged lipid and is abrogated at high ionic strength. Forced dimerization of MA increases its membrane affinity by several orders of magnitude. When green fluorescent protein fusions of monomeric or dimeric MA are expressed in cells, the dimeric but not the monomeric protein becomes strongly membrane associated. Computational modeling supports these results and suggests a molecular mechanism for the modest effect of myristoylation on binding, wherein the membrane provides a hydrophobic environment for the myristate that is energetically similar to that provided by the protein. Overall, the results imply that the driving force for membrane association stems largely from ionic interactions between multimerized Gag and negatively charged phospholipids.  相似文献   

10.
Membrane proteins in a biological membrane are surrounded by a shell or annulus of 'solvent' lipid molecules. These lipid molecules in general interact rather non-specifically with the protein molecules, although a few 'hot-spots' may be present on the protein where anionic lipids bind with high affinity. Because of the low structural specificity of most of the annular sites, the composition of the lipid annulus will be rather similar to the bulk lipid composition of the membrane. The structures of the solvent lipid molecules are important in determining the conformational state of a membrane protein, and hence its activity, through charge and hydrogen bonding interactions between the lipid headgroups and residues in the protein, and through hydrophobic matching between the protein and the surrounding lipid bilayer. Evidence is also accumulating for the presence of 'co-factor' lipid molecules binding with high specificity to membrane proteins, often between transmembrane alpha-helices, and often being essential for activity.  相似文献   

11.
Phospholipid catalysis of diabetic amyloid assembly   总被引:6,自引:0,他引:6  
Islet amyloid polypeptide (IAPP) is a 37-residue hormone that forms cytotoxic amyloid fibers in the endocrine pancreas of patients with type II diabetes (NIDDM). A potential origin for cytotoxicity is disruption of lipid membranes by IAPP as has been observed in vitro. The cause of amyloid formation during NIDDM is not known, nor is the mechanism by which membrane disruption occurs in vitro. Here, we use kinetic studies in conjunction with assessments of lipid binding and electron microscopy to investigate the interactions of IAPP with phospholipid bilayers and the morphological effects of membranes on IAPP fibers. Fibrillogenesis of IAPP is catalyzed by synthetic and human tissue-derived phospholipids, leading to >tenfold increases in the rate of fibrillogenesis. The molecular basis of this phenomenon includes a strong dependence on the concentration and charge density of the membrane. IAPP binds to lipid membranes of mixed anionic (DOPG) and zwitterionic (DOPC) content. The transition for binding occurs over a physiologically relevant range of anionic content. Membrane binding by IAPP occurs on timescales that are short compared to fibrillogenesis and results in assembly into preamyloid states via ordered interactions at the N but not C terminus of the protein. These assemblies lead both to gross morphological changes in liposomes and to alterations in the appearance of early fibers when compared to liposome-free fibril formation. Intact bilayer surfaces are regenerated upon dissociation of fibers from the membrane surface. These findings offer a structural mechanism of membrane destabilization and suggest that changes in lipid metabolism could induce IAPP fiber formation in NIDDM.  相似文献   

12.
The trafficking of G protein coupled‐receptors (GPCRs) is one of the most exciting areas in cell biology because of recent advances demonstrating that GPCR signaling is spatially encoded. GPCRs, acting in a diverse array of physiological systems, can have differential signaling consequences depending on their subcellular localization. At the plasma membrane, GPCR organization could fine‐tune the initial stages of receptor signaling by determining the magnitude of signaling and the type of effectors to which receptors can couple. This organization is mediated by the lipid composition of the plasma membrane, receptor‐receptor interactions, and receptor interactions with intracellular scaffolding proteins. GPCR organization is subsequently changed by ligand binding and the regulated endocytosis of these receptors. Activated GPCRs can modulate the dynamics of their own endocytosis through changing clathrin‐coated pit dynamics, and through the scaffolding adaptor protein β‐arrestin. This endocytic regulation has signaling consequences, predominantly through modulation of the MAPK cascade. This review explores what is known about receptor sorting at the plasma membrane, protein partners that control receptor endocytosis, and the ways in which receptor sorting at the plasma membrane regulates downstream trafficking and signaling.   相似文献   

13.
Biological membranes are characterized by a heterogeneous composition, which is not only manifested in the wide variety of their components, but also in aspects like the lateral organization, topology, and conformation of proteins and lipids. In bringing about the correct membrane structure, protein–lipid interactions can be expected to play a prominent role. The extent of hydrophobic matching between transmembrane protein segments and lipids potentially constitutes a versatile director of membrane organization, because a tendency to avoid hydrophobic mismatch could result in compensating adaptations such as tilt of the transmembrane segment or segregation into distinct domains. Also, interfacial interactions between lipid headgroups and the aromatic and charged residues that typically flank transmembrane domains may act as an organizing element. In this review, we discuss the numerous model studies that have systematically explored the influence of hydrophobic matching and interfacial anchoring on membrane structure. Designed peptides consisting of a polyleucine or polyleucine/alanine hydrophobic stretch, which is flanked on both sides by tryptophan or lysine residues, reflect the general layout of transmembrane protein segments. It is shown for phosphatidylcholine bilayers and for other model membranes that these peptides adapt a transmembrane topology without extensive peptide or lipid adaptations under conditions of hydrophobic matching, but that significant rearrangements can result from hydrophobic mismatch. Moreover, these effects depend on the nature of the flanking residues, implying a modulation of the mismatch response by interfacial interactions of the flanking residues. The implications of these model studies for the organization of biomembranes are discussed in the context of recent experiments with more complex systems.  相似文献   

14.
Cell surface calreticulin (CRT) binding to thrombospondin-1 (TSP1), regulates cell adhesion, migration, anoikis resistance, and collagen production. Due to the essential role of membrane microdomains in CRT-mediated focal adhesion disassembly, we previously studied the effect of raft-like bilayers on TSP1–CRT interactions with all-atom molecular dynamics (AAMD) simulations. However, the simulated systems of protein on the surface of the bilayer(s) in the explicit solvent are too large for long timescale AAMD simulations due to computational expense. In this study, we adopted a multiscale modeling approach of combining AAMD, coarse-grained molecule dynamics (CGMD), and reversed AAMD (REV AAMD) simulations to investigate the interactions of single CRT or of the TSP1–CRT complex with a membrane microdomain at microsecond timescale. Results showed that CRT conformational stabilization by binding of TSP1 in AAMD simulation was undetectable in CGMD simulation, but it was recovered in REV AAMD simulation. Similarly, interactions of the CRT N-domain and TSP1 with the membrane microdomain were lost in CGMD simulations but they were re-gained in the REV AAMD simulations. There was the higher coordination of the CRT P-domain in the TSP1–CRT complex with the lipid components of membrane microdomain compared to that of single CRT, which could directly affect the conformation of CRT and further mediate CRT recruitment of LDL receptor-related protein for signaling events. This study provides structural and molecular insights into TSP1–CRT interactions in a membrane microdomain environment and demonstrates the feasibility of using multiscale simulations to investigate the interactions between protein and membrane microdomains at a long timescale.  相似文献   

15.
Membrane protein biogenesis in bacteria occurs via dedicated molecular systems SecYEG and YidC that function independently and in cooperation. YidC belongs to the universally conserved Oxa1/Alb3/YidC family of membrane insertases and is believed to associate with translating ribosomes at the membrane surface. Here, we have examined the architecture of the YidC:ribosome complex formed upon YidC-mediated membrane protein insertion. Fluorescence correlation spectroscopy was employed to investigate the complex assembly under physiological conditions. A slightly acidic environment stimulates binding of detergent-solubilized YidC to ribosomes due to electrostatic interactions, while YidC acquires specificity for translating ribosomes at pH-neutral conditions. The nanodisc reconstitution of the YidC to embed it into a native phospholipid membrane environment strongly enhances the YidC:ribosome complex formation. A single copy of YidC suffices for the binding of translating ribosome both in detergent and at the lipid membrane interface, thus being the minimal functional unit. Data reveal molecular details on the insertase functioning and interactions and suggest a new structural model for the YidC:ribosome complex.  相似文献   

16.
The effects of glycosylation and membrane environment on the structural stability of the nicotinic acetylcholine receptor (nAChR) from Torpedo have been investigated to improve our understanding of factors that influence eukaryotic membrane protein crystallization. Gel shift assays and carbohydrate-specific staining show that the deglycosylation enzyme, Endo F1, removes at least 50% of membrane-reconstituted nAChR glycosylation. The extent of deglycosylation with Endo F1 increases upon detergent solubilization. Removal of between 60-100% of high mannose moieties from the nAChR has no effect on nAChR secondary structure, stability, or flexibility. Deglycosylation does not influence either agonist binding or the ability of the nAChR to undergo agonist-induced conformational change. In contrast, nAChR structural stability, flexibility, and function are all negatively influenced by simple changes in reconstituted membrane lipid composition. Our results suggest that deglycosylation may represent a feasible approach for enhancing the crystallizability of the nAChR. Our data also demonstrate that the dependence of nAChR structural stability on lipid environment may represent a significant obstacle to nAChR crystallization. Some membrane proteins may have evolved complex interactions with their lipid environments. Understanding the complexity of these interactions may be essential for devising an appropriate strategy for the crystallization of some membrane proteins.  相似文献   

17.
Choi KS  Aizaki H  Lai MM 《Journal of virology》2005,79(15):9862-9871
Thorp and Gallagher first reported that depletion of cholesterol inhibited virus entry and cell-cell fusion of mouse hepatitis virus (MHV), suggesting the importance of lipid rafts in MHV replication (E. B. Thorp and T. M. Gallagher, J. Virol. 78:2682-2692, 2004). However, the MHV receptor is not present in lipid rafts, and anchoring of the MHV receptor to lipid rafts did not enhance MHV infection; thus, the mechanism of lipid rafts involvement is not clear. In this study, we defined the mechanism and extent of lipid raft involvement in MHV replication. We showed that cholesterol depletion by methyl beta-cyclodextrin or filipin did not affect virus binding but reduced virus entry. Furthermore, MHV spike protein bound to nonraftraft membrane at 4 degrees C but shifted to lipid rafts at 37 degrees C, indicating a redistribution of membrane following virus binding. Thus, the lipid raft involvement in MHV entry occurs at a step following virus binding. We also found that the viral spike protein in the plasma membrane of the infected cells was associated with lipid rafts, whereas that in the Golgi membrane, where MHV matures, was not. Moreover, the buoyant density of the virion was not changed when MHV was produced from the cholesterol-depleted cells, suggesting that MHV does not incorporate lipid rafts into the virion. These results indicate that MHV release does not involve lipid rafts. However, MHV spike protein has an inherent ability to associate with lipid rafts. Correspondingly, cell-cell fusion induced by MHV was retarded by cholesterol depletion, consistent with the association of the spike protein with lipid rafts in the plasma membrane. These findings suggest that MHV entry requires specific interactions between the spike protein and lipid rafts, probably during the virus internalization step.  相似文献   

18.
The effect of glycosphingolipids (GSLs) with oligosaccharide chains of different length and charge on membrane-membrane interactions induced by myelin basic protein (MBP) or melittin (Mel) was comparatively investigated with small unilamellar vesicles. MBP induces a fast vesicle aggregation and close membrane apposition. Merging of lipid bilayers and vesicle fusion induced by MBP are slower and less extensive processes compared to membrane apposition. The changes of membrane permeability concomitant to these phenomena are small. The Trp region of MBP remains in a rather polar environment when interacting with vesicles; its accessibility to NO3- or acrylamide quenching depends on the type of GSLs in the membrane. The Trp region of Mel is inserted more deeply into the lipid bilayer and its accessibility to the aqueous quenchers is less dependent on variations of the oligosaccharide chain of the GSLs. Mel induces a faster and more extensive membrane apposition and bilayer merging than does MBP. Extensive vesicle disruption occurs in the presence of Mel. Negatively charged GSLs facilitate membrane proximity and vesicle aggregation but an increase of the oligosaccharide chain length of either neutral or acidic GSLs decreases the interaction among vesicles that are induced by either protein. This effect is independent of the different mode of insertion of MBP and Mel into the membrane. Our results suggest that the modulation by the oligosaccharide chain on the protein-induced interactions between bilayers containing GSLs is probably exerted beyond the level of local molecular interactions between the basic proteins and the lipids.  相似文献   

19.
Diraviyam K  Murray D 《Biochemistry》2006,45(8):2584-2598
Secreted phospholipases A2 (sPLA2's) are enzymes that hydrolyze glycerophospholipids at the sn-2 position, which leads to the production of lipid mediators of many cellular processes. These interfacial enzymes are regulated by their lipid specificity at two levels: membrane binding and substrate recognition. Different sPLA2's utilize different combinations of electrostatic and hydrophobic interactions to adsorb to membrane surfaces, which results in the wide range of membrane binding behaviors observed. Here, the finite difference Poisson Boltzmann (FDPB) method is used to quantitatively analyze the contribution of electrostatic interactions to the membrane association of two highly basic group II sPLA2's: Agkistrodon piscivorus piscivorus (AppD49) sPLA2 and nonpancreatic human group IIA (hGIIA) sPLA2. The calculations predict how membrane binding is affected by ionic strength, membrane composition, substitutions of residues in the enzymes, and the presence of calcium in the active site. In addition, the results provide molecular models for the membrane-associated forms of the enzymes. Furthermore, these models account for (1) changes in orientation and protonation state of both the native and charge reversal forms of the enzymes at the membrane surface and (2) the effect of protein/vesicle aggregation, as observed for hGIIA sPLA2. Importantly, the modeling quantitatively describes the complex membrane binding behaviors of these interfacial enzymes in terms of simple physical forces and provides structural information that is difficult to obtain experimentally. The computational analysis shows that nonspecific electrostatic interactions not only play a major role in recruiting these enzymes to membrane surfaces but also orient the enzymes for productive catalysis at the membrane interface.  相似文献   

20.
Protein–membrane interactions play essential roles in a variety of cell functions such as signaling, membrane trafficking, and transport. Membrane-recruited cytosolic proteins that interact transiently and interfacially with lipid bilayers perform several of those functions. Experimental techniques capable of probing changes on the structural dynamics of this weak association are surprisingly limited. Among such techniques, electron spin resonance (ESR) has the enormous advantage of providing valuable local information from both membrane and protein perspectives by using intrinsic paramagnetic probes in metalloproteins or by attaching nitroxide spin labels to proteins and lipids. In this review, we discuss the power of ESR to unravel relevant structural and functional details of lipid–peripheral membrane protein interactions with special emphasis on local changes of specific regions of the protein and/or the lipids. First, we show how ESR can be used to investigate the direct interaction between a protein and a particular lipid, illustrating the case of lipid binding into a hydrophobic pocket of chlorocatechol 1,2-dioxygenase, a non-heme iron enzyme responsible for catabolism of aromatic compounds that are industrially released in the environment. In the second case, we show the effects of GPI-anchored tissue-nonspecific alkaline phosphatase, a protein that plays a crucial role in skeletal mineralization, and on the ordering and dynamics of lipid acyl chains. Then, switching to the protein perspective, we analyze the interaction with model membranes of the brain fatty acid binding protein, the major actor in the reversible binding and transport of hydrophobic ligands such as long-chain, saturated, or unsaturated fatty acids. Finally, we conclude by discussing how both lipid and protein views can be associated to address a common question regarding the molecular mechanism by which dihydroorotate dehydrogenase, an essential enzyme for the de novo synthesis of pyrimidine nucleotides, and how it fishes out membrane-embedded quinones to perform its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号