首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose.  相似文献   

2.
The trajectory of a single protein in the cytosol of a living cell contains information about its molecular interactions in its native environment. However, it has remained challenging to accurately resolve and characterize the diffusive states that can manifest in the cytosol using analytical approaches based on simplifying assumptions. Here, we show that multiple intracellular diffusive states can be successfully resolved if sufficient single-molecule trajectory information is available to generate well-sampled distributions of experimental measurements and if experimental biases are taken into account during data analysis. To address the inherent experimental biases in camera-based and MINFLUX-based single-molecule tracking, we use an empirical data analysis framework based on Monte Carlo simulations of confined Brownian motion. This framework is general and adaptable to arbitrary cell geometries and data acquisition parameters employed in two-dimensional or three-dimensional single-molecule tracking. We show that, in addition to determining the diffusion coefficients and populations of prevalent diffusive states, the timescales of diffusive state switching can be determined by stepwise increasing the time window of averaging over subsequent single-molecule displacements. Time-averaged diffusion analysis of single-molecule tracking data may thus provide quantitative insights into binding and unbinding reactions among rapidly diffusing molecules that are integral for cellular functions.  相似文献   

3.
4.
Many time-resolved single-molecule biophysics experiments seek to characterize the kinetics of biomolecular systems exhibiting dynamics that challenge the time resolution of the given technique. Here, we present a general, computational approach to this problem that employs Bayesian inference to learn the underlying dynamics of such systems, even when they are much faster than the time resolution of the experimental technique being used. By accurately and precisely inferring rate constants, our Bayesian inference for the analysis of subtemporal resolution dynamics approach effectively enables the experimenter to super-resolve the poorly resolved dynamics that are present in their data.  相似文献   

5.
The molecular interactions between antimicrobial peptides (AMPs) and lipid A-containing supported lipid bilayers were probed using single-molecule total internal reflection fluorescence microscopy. Hybrid supported lipid bilayers with lipid A outer leaflets and phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) inner leaflets were prepared and characterized, and the spatiotemporal trajectories of individual fluorescently labeled LL37 and Melittin AMPs were determined as they interacted with the bilayer surfaces comprising either monophosphoryl or diphosphoryl lipid A (from Escherichia coli) to determine the impact of electrostatic interactions. Large numbers of trajectories were obtained and analyzed to obtain the distributions of surface residence times and the statistics of the spatial trajectories. Interestingly, the AMP species were sensitive to subtle differences in the charge of the lipid, with both peptides diffusing more slowly and residing longer on the diphosphoryl lipid A. Furthermore, the single-molecule dynamics indicated a qualitative difference between the behavior of AMPs on hybrid Lipid A bilayers and on those composed entirely of DOPE. Whereas AMPs interacting with a DOPE bilayer exhibited two-dimensional Brownian diffusion with a diffusion coefficient of ~1.7 μm2/s, AMPs adsorbed to the lipid A surface exhibited much slower apparent diffusion (on the order of ~0.1 μm2/s) and executed intermittent trajectories that alternated between two-dimensional Brownian diffusion and desorption-mediated three-dimensional flights. Overall, these findings suggested that bilayers with lipid A in the outer leaflet, as it is in bacterial outer membranes, are valuable model systems for the study of the initial stage of AMP-bacterium interactions. Furthermore, single-molecule dynamics was sensitive to subtle differences in electrostatic interactions between cationic AMPs and monovalent or divalent anionic lipid A moieties.  相似文献   

6.
Single-molecule methods provide direct measurements of macromolecular dynamics, but are limited by the number of degrees of freedom that can be followed at one time. High-resolution rotor bead tracking (RBT) measures DNA torque, twist, and extension, and can be used to characterize the structural dynamics of DNA and diverse nucleoprotein complexes. Here, we extend RBT to enable simultaneous monitoring of additional degrees of freedom. Fluorescence-RBT (FluoRBT) combines magnetic tweezers, infrared evanescent scattering, and single-molecule FRET imaging, providing real-time multiparameter measurements of complex molecular processes. We demonstrate the capabilities of FluoRBT by conducting simultaneous measurements of extension and FRET during opening and closing of a DNA hairpin under tension, and by observing simultaneous changes in FRET and torque during a transition between right-handed B-form and left-handed Z-form DNA under controlled supercoiling. We discover unanticipated continuous changes in FRET with applied torque, and also show how FluoRBT can facilitate high-resolution FRET measurements of molecular states, by using a mechanical signal as an independent temporal reference for aligning and averaging noisy fluorescence data. By combining mechanical measurements of global DNA deformations with FRET measurements of local conformational changes, FluoRBT will enable multidimensional investigations of systems ranging from DNA structures to large macromolecular machines.  相似文献   

7.
Bacterial high-copy-number (hcn) plasmids provide an excellent model to study the underlying physical mechanisms of DNA segment segregation in an intracellular context. Using two-color fluorescent repressor-operator systems and a synthetic repressible replication origin, we tracked the motion and segregation of single hcn plasmid molecules in individual cells. The plasmid diffusion dynamics revealed between-plasmid temporal associations (clustering) as well as entropic and elastic recoiling forces in the confined intracellular spaces outside of nucleoids. These two effects could be effectively used in models to predict the heterogeneity of segregation. Additionally, the motile behaviors of hcn plasmids provide quantitative estimates of entropic exclusion strength and dynamic associations between DNA segments. Overall, this study utilizes a, to our knowledge, novel approach to predict the polymer dynamics of DNA segments in spatially confined, crowded cellular compartments as well as during bacterial chromosome segregation.  相似文献   

8.
Force plays a key role in regulating dynamics of biomolecular structure and interactions, yet techniques are lacking to manipulate and continuously read out this response with high throughput. We present an enzymatic assay for force-dependent accessibility of structure that makes use of a wireless mini-radio centrifuge force microscope to provide a real-time readout of kinetics. The microscope is designed for ease of use, fits in a standard centrifuge bucket, and offers high-throughput, video-rate readout of individual proteolytic cleavage events. Proteolysis measurements on thousands of tethered collagen molecules show a load-enhanced trypsin sensitivity, indicating destabilization of the triple helix.  相似文献   

9.
Folding of proteins and nucleic acids involves a diffusive search over a multidimensional conformational energy landscape for the minimal-energy structure. When examining the projection of conformational motions onto a one-dimensional reaction coordinate, as done in most experiments, the diffusion coefficient D is generally position dependent. However, it has proven challenging to measure such position-dependence experimentally. We investigated the position-dependence of D in the folding of DNA hairpins as a simple model system in two ways: first, by analyzing the round-trip time to return to a given extension in constant-force extension trajectories measured by force spectroscopy, and second, by analyzing the fall time required to reach a given extension in force jump measurements. These methods yielded conflicting results: the fall time implied a fairly constant D, but the round-trip time implied variations of over an order of magnitude. Comparison of experiments with computational simulations revealed that both methods were strongly affected by experimental artifacts inherent to force spectroscopy measurements, which obscured the intrinsic position-dependence of D. Lastly, we applied Kramers’s theory to the kinetics of hairpins with energy barriers located at different positions along the hairpin stem, as a crude probe of D at different stem positions, and we found that D did not vary much as the barrier was moved along the reaction coordinate. This work underlines the difficulties faced when trying to deduce position-dependent diffusion coefficients from experimental folding trajectories.  相似文献   

10.
Single-molecule and super-resolution imaging relies on successful, sensitive, and accurate detection of the emission from fluorescent molecules. Yet, despite the widespread adoption of super-resolution microscopies, single-molecule data processing algorithms can fail to provide accurate measurements of the brightness and position of molecules in the presence of backgrounds that fluctuate significantly over time and space. Thus, samples or experiments that include obscuring backgrounds can severely, or even completely, hinder this process. To date, no general data analysis approach to this problem has been introduced that is capable of removing obscuring backgrounds for a wide variety of experimental modalities. To address this need, we present the Single-Molecule Accurate LocaLization by LocAl Background Subtraction (SMALL-LABS) algorithm, which can be incorporated into existing single-molecule and super-resolution analysis packages to accurately locate and measure the intensity of single molecules, regardless of the shape or brightness of the background. Accurate background subtraction is enabled by separating the foreground from the background based on differences in the temporal variations of the foreground and the background (i.e., fluorophore blinking, bleaching, or moving). We detail the function of SMALL-LABS here, and we validate the SMALL-LABS algorithm on simulated data as well as real data from single-molecule imaging in living cells.  相似文献   

11.
The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.  相似文献   

12.
Structural RNA domains are widely involved in the regulation of biological functions, such as gene expression, gene modification, and gene repair. Activity of these dynamic regions depends sensitively on the global fold of the RNA, in particular, on the binding affinity of individual conformations to effector molecules in solution. Consequently, both the 1) structure and 2) conformational dynamics of noncoding RNAs prove to be essential in understanding the coupling that results in biological function. Toward this end, we recently reported observation of three conformational states in the metal-induced folding pathway of the tRNA-like structure domain of Brome Mosaic Virus, via single-molecule fluorescence resonance energy transfer studies. We report herein selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE)-directed structure predictions as a function of metal ion concentrations ([Mn+]) to confirm the three-state folding model, as well as test 2° structure models from the literature. Specifically, SHAPE reactivity data mapped onto literature models agrees well with the secondary structures observed at 0–10 mM [Mg2+], with only minor discrepancies in the E hairpin domain at low [Mg2+]. SHAPE probing and SHAPE-directed structure predictions further confirm the stepwise unfolding pathway previously observed in our single-molecule studies. Of special relevance, this means that reduction in the metal-ion concentration unfolds the 3′ pseudoknot interaction before unfolding the long-range stem interaction. This work highlights the synergistic power of combining 1) single-molecule Förster resonance energy transfer and 2) SHAPE-directed structure-probing studies for detailed analysis of multiple RNA conformational states. In particular, single-molecule guided deconvolution of the SHAPE reactivities permits 2° structure predictions of isolated RNA conformations, thereby substantially improving on traditional limitations associated with current structure prediction algorithms.  相似文献   

13.
Nuclear translocation of stimulated Smad heterocomplexes is a critical step in the signal transduction of transforming growth factor β (TGF-β) from transmembrane receptors into the nucleus. Specifically, normal nuclear accumulation of Smad2/Smad4 heterocomplexes induced by TGF-β1 is involved in carcinogenesis. However, the relationship between nuclear accumulation and the nucleocytoplasmic transport kinetics of Smad proteins in the presence of TGF-β1 remains obscure. By combining a high-speed single-molecule tracking microscopy and Förster resonance energy transfer technique, we tracked the entire TGF-β1-induced process of Smad2/Smad4 heterocomplex formation, as well as their transport through nuclear pore complexes in live cells, with a high single-molecule localization precision of 2 ms and <20 nm. Our single-molecule Förster resonance energy transfer data have revealed that in TGF-β1-treated cells, Smad2/Smad4 heterocomplexes formed in the cytoplasm, imported through the nuclear pore complexes as entireties, and finally dissociated in the nucleus. Moreover, we found that basal-state Smad2 or Smad4 cannot accumulate in the nucleus without the presence of TGF-β1, mainly because both of them have an approximately twofold higher nuclear export efficiency compared to their nuclear import. Remarkably and reversely, heterocomplexes of Smad2/Smad4 induced by TGF-β1 can rapidly concentrate in the nucleus because of their almost fourfold higher nuclear import rate in comparison with their nuclear export rate. Thus, we believe that the determined TGF-β1-dependent transport configurations and efficiencies for the basal-state Smad or stimulated Smad heterocomplexes elucidate the basic molecular mechanism to understand their nuclear transport and accumulation.  相似文献   

14.
The extracellular polysaccharide hyaluronan (HA) is ubiquitous in all vertebrate tissues, where its various functions are encoded in the supramolecular complexes and matrices that it forms with HA-binding proteins (hyaladherins). In tissues, these supramolecular architectures are frequently subjected to mechanical stress, yet how this affects the intermolecular bonding is largely unknown. Here, we used a recently developed single-molecule force spectroscopy platform to analyze and compare the mechanical strength of bonds between HA and a panel of hyaladherins from the Link module superfamily, namely the complex of the proteoglycan aggrecan and cartilage link protein, the proteoglycan versican, the inflammation-associated protein TSG-6, the HA receptor for endocytosis (stabilin-2/HARE), and the HA receptor CD44. We find that the resistance to tensile stress for these hyaladherins correlates with the size of the HA-binding domain. The lowest mean rupture forces are observed for members of the type A subgroup (i.e., with the shortest HA-binding domains; TSG-6 and HARE). In contrast, the mechanical stability of the bond formed by aggrecan in complex with cartilage link protein (two members of the type C subgroup, i.e., with the longest HA-binding domains) and HA is equal or even superior to the high affinity streptavidin?biotin bond. Implications for the molecular mechanism of unbinding of HA?hyaladherin bonds under force are discussed, which underpin the mechanical properties of HA?hyaladherin complexes and HA-rich extracellular matrices.  相似文献   

15.
Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, interactions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-molecule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail. Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measurements. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers and an OTW and find that both approaches can achieve a torque precision better than 1 pN · nm. The OTW, capable of measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times?10 s, after which drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measurement time across different measurement modalities and provides a tool to optimize measurement protocols for a given instrument and application.  相似文献   

16.
Recent studies have shown that the small GTPase KRAS adopts multiple orientations with respect to the plane of anionic model membranes, whereby either the three C-terminal helices or the three N-terminal β-strands of the catalytic domain face the membrane. This has functional implications because, in the latter, the membrane occludes the effector-interacting surface. However, it remained unclear how membrane reorientation occurs and, critically, whether it occurs in the cell in which KRAS operates as a molecular switch in signaling pathways. Herein, using data from a 20 μs-long atomistic molecular dynamics simulation of the oncogenic G12V-KRAS mutant in a phosphatidylcholine/phosphatidylserine bilayer, we first show that internal conformational fluctuations of flexible regions in KRAS result in three distinct membrane orientations. We then show, using single-molecule fluorescence resonance energy transfer measurements in native lipid nanodiscs derived from baby hamster kidney cells, that G12V-KRAS samples three conformational states that correspond to the predicted orientations. The combined results suggest that relatively small energy barriers separate orientation states and that signaling-competent conformations dominate the overall population.  相似文献   

17.
Few techniques are suited to probe the structure and dynamics of molecular complexes at the mesoscale level (100–1000 nm). We have developed a single-molecule technique that uses tracking fluorescence correlation spectroscopy (tFCS) to probe the conformation and dynamics of mesoscale molecular assemblies. tFCS measures the distance fluctuations between two fluorescently labeled sites within an untethered, freely diffusing biomolecule. To achieve subdiffraction spatial resolution, we developed a feedback scheme that allows us to maintain the molecule at an optimal position within the laser intensity gradient for fluorescence correlation spectroscopy. We characterized tFCS spatial sensitivity by measuring the Brownian end-to-end dynamics of DNA molecules as short as 1000 bp. We demonstrate that tFCS detects changes in the compaction of reconstituted nucleosome arrays and can assay transient protein-mediated interactions between distant sites in an individual DNA molecule. Our measurements highlight the applicability of tFCS to a wide variety of biochemical processes involving mesoscale conformational dynamics.  相似文献   

18.
19.
20.
Many have worked to create cardiac action potential models that explicitly represent atomic-level details of ion channel structure. Such models have the potential to define new therapeutic directions and to show how nanoscale perturbations to channel function predispose patients to deadly cardiac arrhythmia. However, there have been significant experimental and theoretical barriers that have limited model usefulness. Recently, many of these barriers have come down, suggesting that considerable progress toward creating these long-sought models may be possible in the near term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号