首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Denitrifying activity in a sediment from the freshwater part of a polluted estuary in northwest Europe was quantified using two independent approaches. High-resolution N2O microprofiles were recorded in sediment cores to which acetylene was added to the overlying water and injected laterally into the sediment. The vertical distribution of the rate of denitrification supported by nitrate uptake from the overlying water was then derived from the time series N2O concentration profiles. The rates obtained for the core incubations were compared to the rates predicted by a forward reactive transport model, which included rate expression for denitrification calibrated with potential rate measurements obtained in flowthrough reactors containing undisturbed, 1-cm-thick sediment slices. The two approaches yielded comparable rate profiles, with a near-surface, 2- to 3-mm narrow zone of denitrification and maximum in situ rates on the order of 200 to 300 nmol cm−3 h−1. The maximum in situ rates were about twofold lower than the maximum potential rate for the 0- to 1-cm depth interval of the sediment, indicating that in situ denitrification was nitrate limited. The experimentally and model-derived rates of denitrification implied that there was nitrate uptake by the sediment at a rate that was on the order of 50 (± 10) nmol cm−2 h−1, which agreed well with direct nitrate flux measurements for core incubations. Reactive transport model calculations showed that benthic uptake of nitrate at the site is particularly sensitive to the nitrate concentration in the overlying water and the maximum potential rate of denitrification in the sediment.  相似文献   

2.
The seasonal variation and depth distribution of the capacity for denitrification and dissimilatory NO3 reduction to NH4+ (NO3 ammonification) were studied in the upper 4 cm of the sediment of Norsminde Fjord estuary, Denmark. A combination of C2H2 inhibition and 15N isotope techniques was used in intact sediment cores in short-term incubations (maximum, 4 h). The denitrification capacity exhibited two maxima, one in the spring and one in the fall, whereas the capacity for NO3 ammonification was maximal in the late summer, when sediments were progressively reduced. The denitrification capacity was always highest in the uppermost 1 cm of the sediment and declined with depth. The NO3 ammonification was usually higher with depth, but the maximum activity in late summer was observed within the upper 1 cm. The capacity for NO3 incorporation into organic material was investigated on two occasions in intact sediment cores and accounted for less than 5% of the total NO3 reduction. Denitrification accounted for between 13 and 51% of the total NO3 reduction, and NH4+ production accounted for between 4 and 21%, depending on initial rates during the time courses. Changes of the rates during the incubation were observed in the late summer, which reflected synthesis of denitrifying enzymes. This time lag was eliminated in experiments with mixed sediment because of preincubation with NO3 and alterations of the near-environmental conditions. The initial rates obtained in intact sediment cores therefore reflect the preexisting enzyme content of the sediment.  相似文献   

3.
1. Nutrients released from lake sediments can influence water column nutrient concentrations and planktonic productivity. We examined sediment nutrient release [soluble reactive phosphorus (SRP) and ammonia (NH)] at two sites in a eutrophic reservoir (Acton Lake, OH, U.S.A.) that differed in physical mixing conditions (a thermally stratified and an unstratified site). 2. Sediment nutrient release rates were estimated with three methods: sediment core incubations, seasonal in situ hypolimnetic accumulation and a published regression model that predicted sediment phosphorous (P) release rate from sediment P concentration. All three methods were applied to the deeper stratified site in the reservoir; however, we used only sediment core incubations to estimate SRP and NH release rates at the shallow unstratified site because of the lack of thermal stratification. We also compared the total P concentration (TPS) of sediments and the concentration of P in various sediment fractions at both sites. 3. Anoxic sediments at the stratified site released SRP at rates more than an order of magnitude greater than oxic sediments at the shallow unstratified site. However, P accumulated in the hypolimnion at much lower rates than predicted by sediment core incubations. In contrast, NH was released at similar rates at both sites and accumulated in the hypolimnion at close to the expected rate, indicating that P was ‘lost’ from the hypolimnion through biogeochemical pathways for P, such as precipitation with inorganic material or biological uptake and sedimentation. 4. TPS was significantly greater at the deeper stratified site and organically bound P accounted for >50% of TPS at both sites. 5. We examined the magnitude of SRP fluxes into the study reservoir in 1996 by comparing the mean summer daily SRP fluxes from anaerobic sediments, aerobic sediments, stream inflows and gizzard shad excretion. While the SRP release from anaerobic sediments was high, we hypothesise that little of this SRP gained access to the epilimnion in mid‐summer. SRP flux to the reservoir from aerobic sediments was less than from gizzard shad excretion and streams. Large interannual variability in thermocline stability, gizzard shad biomass and stream discharge volumes, will affect SRP loading rates from different sources in different years. Therefore, construction of P budgets for different years should account for interannual variation in these parameters.  相似文献   

4.
Xingyue Liu  Ding Yang 《Hydrobiologia》2004,515(1-3):147-159
Lake Illawarra, is a typical shallow intertidal coastal barrier lagoon in New South Wales, Australia. This paper reports the first examination of photosynthetic characteristics of benthic microalgae and seagrass in this lake by measuring the oxygen exchange procedure (flux) using sediment-core incubations in the laboratory. Photosynthesis vs irradiance relationships (P–I curves) were generated from measurements made at nine irradiances for microphytobenthos (MPB) at five different water depths (sites) during September 2002. Maximum benthic gross primary production (GPmax) for MPB in this lake tended to decrease with the increasing water depth from Site 5 (about 0.2 m deep) to Site 1 (about 3.0 m deep), and was correlated with decreasing surface sediment Chl-a concentrations.  相似文献   

5.
Urbanised environments have been identified as hotspots of anthropogenic methane emissions. Especially urban aquatic ecosystems are increasingly recognised as important sources of methane. However, the microbiology behind these emissions remains unexplored. Here, we applied microcosm incubations and molecular analyses to investigate the methane-cycling community of the Amsterdam canal system in the Netherlands. The sediment methanogenic communities were dominated by Methanoregulaceae and Methanosaetaceae, with co-occurring methanotrophic Methanoperedenaceae and Methylomirabilaceae indicating the potential for anaerobic methane oxidation. Methane was readily produced after substrate amendment, suggesting an active but substrate-limited methanogenic community. Bacterial 16S rRNA gene amplicon sequencing of the sediment revealed a high relative abundance of Thermodesulfovibrionia. Canal wall biofilms showed the highest initial methanotrophic potential under oxic conditions compared to the sediment. During prolonged incubations the maximum methanotrophic rate increased to 8.08 mmol gDW−1 d−1 that was concomitant with an enrichment of Methylomonadaceae bacteria. Metagenomic analysis of the canal wall biofilm lead to the recovery of a single methanotroph metagenome-assembled genome. Taxonomic analysis showed that this methanotroph belongs to the genus Methyloglobulus. Our results underline the importance of previously unidentified and specialised environmental niches at the nexus of the natural and human-impacted carbon cycle.  相似文献   

6.
Eutrophication is a water quality issue in lakes worldwide, and there is a critical need to identify and control nutrient sources. Internal phosphorus (P) loading from lake sediments can account for a substantial portion of the total P load in eutrophic, and some mesotrophic, lakes. Laboratory determination of P release rates from sediment cores is one approach for determining the role of internal P loading and guiding management decisions. Two principal alternatives to experimental determination of sediment P release exist for estimating internal load: in situ measurements of changes in hypolimnetic P over time and P mass balance. The experimental approach using laboratory-based sediment incubations to quantify internal P load is a direct method, making it a valuable tool for lake management and restoration.Laboratory incubations of sediment cores can help determine the relative importance of internal vs. external P loads, as well as be used to answer a variety of lake management and research questions. We illustrate the use of sediment core incubations to assess the effectiveness of an aluminum sulfate (alum) treatment for reducing sediment P release. Other research questions that can be investigated using this approach include the effects of sediment resuspension and bioturbation on P release.The approach also has limitations. Assumptions must be made with respect to: extrapolating results from sediment cores to the entire lake; deciding over what time periods to measure nutrient release; and addressing possible core tube artifacts. A comprehensive dissolved oxygen monitoring strategy to assess temporal and spatial redox status in the lake provides greater confidence in annual P loads estimated from sediment core incubations.  相似文献   

7.
1. Sediment plays a key role in internal nutrient cycling and eutrophication in lakes. However, studies focusing on the efficiency of the biomanipulation techniques for improving the control of primary producers have rarely examined the effects of changes in food‐web structure on the sediment biochemical composition and biodegradability. 2. In a 1‐year experiment conducted in large replicated mesocosms, we tested how the absence or presence of a zooplanktivorous fish (roach, Rutilus rutilus) affected the elemental composition and the potential biodegradability of recently deposited sediment in a eutrophic system. The potential biodegradability of these sediments was assessed in laboratory microcosms by measuring the production of CO2 during 44‐day incubations. 3. The potential biodegradability of recently deposited sediment from the fish treatment was 60% higher than that from the fishless treatment. This higher biodegradability was corroborated by a higher annual loss of sediment in fish enclosures (36%) than in fishless ones (16%). Annual losses of carbon, nitrogen and organic phosphorous were higher for sediment from fish enclosures. 4. Carbon and nitrogen contents of sediment were higher for the fish treatment. In contrast, the sediment C/N ratio, one of the proxies used to estimate sediment biodegradability, did not differ between treatments. No relationship was observed between elemental composition of sediment and its potential biodegradability. This latter appeared to be more probably dependent on the biochemical composition of the sediment and especially on the content of labile compounds such as proteins, sugars and polyunsaturated fatty acids. The use of sterols as biomarkers revealed an important degradation by microorganisms of 1‐year‐old sediment from both fish and fishless treatments. 5. Our results revealed that fish biomanipulations might favour clear water states not only through a stronger top–down control on phytoplankton but also through a lower biodegradability of sediment reducing internal nutrient cycling.  相似文献   

8.
Factors controlling the anaerobic oxidation of ammonium with nitrate and nitrite were explored in a marine sediment from the Skagerrak in the Baltic-North Sea transition. In anoxic incubations with the addition of nitrite, approximately 65% of the nitrogen gas formation was due to anaerobic ammonium oxidation with nitrite, with the remainder being produced by denitrification. Anaerobic ammonium oxidation with nitrite exhibited a biological temperature response, with a rate optimum at 15°C and a maximum temperature of 37°C. The biological nature of the process and a 1:1 stoichiometry for the reaction between nitrite and ammonium indicated that the transformations might be attributed to the anammox process. Attempts to find other anaerobic ammonium-oxidizing processes in this sediment failed. The apparent Km of nitrite consumption was less than 3 μM, and the relative importance of ammonium oxidation with nitrite and denitrification for the production of nitrogen gas was independent of nitrite concentration. Thus, the quantitative importance of ammonium oxidation with nitrite in the jar incubations at elevated nitrite concentrations probably represents the in situ situation. With the addition of nitrate, the production of nitrite from nitrate was four times faster than its consumption and therefore did not limit the rate of ammonium oxidation. Accordingly, the rate of this process was the same whether nitrate or nitrite was added as electron acceptor. The addition of organic matter did not stimulate denitrification, possibly because it was outcompeted by manganese reduction or because transport limitation was removed due to homogenization of the sediment.  相似文献   

9.
Characterizing denitrification rates in aquatic ecosystems is essential to understanding how systems may respond to increased nutrient loading. Thus, it is important to ensure the precision and accuracy of the methods employed for measuring denitrification rates. The acetylene (C2H2) inhibition method is a simple technique for estimating denitrification. However, potential problems, such as inhibition of nitrification and incomplete inhibition of nitrous oxide reduction, may influence rate estimates. Recently, membrane inlet mass spectrometry (MIMS) has been used to measure denitrification in aquatic systems. Comparable results were obtained with MIMS and C2H2 inhibition methods when chloramphenicol was added to C2H2 inhibition assay mixtures to inhibit new synthesis of denitrifying enzymes. Dissolved-oxygen profiles indicated that surface layers of sediment cores subjected to the MIMS flowthrough incubation remained oxic whereas cores incubated using the C2H2 inhibition methods did not. Analysis of the microbial assemblages before and after incubations indicated significant changes in the sediment surface populations during the long flowthrough incubation for MIMS analysis but not during the shorter incubation used for the C2H2 inhibition method. However, bacterial community changes were also small in MIMS cores at the oxygen transition zone where denitrification occurs. The C2H2 inhibition method with chloramphenicol addition, conducted over short incubation intervals, provides a cost-effective method for estimating denitrification, and rate estimates are comparable to those obtained by the MIMS method.  相似文献   

10.
We have examined sediments from a fringing salt marsh in Maine to further understand marine CO metabolism, about which relatively little is known. Intact cores from the marsh emitted CO during dark oxic incubations, but emission rates were significantly higher during anoxic incubations, which provided evidence for simultaneous production and aerobic consumption in surface sediments. CO emission rates were also elevated when cores were exposed to light, which indicated that photochemical reactions play a role in CO production. A kinetic analysis of marsh surface sediments yielded an apparent K(m) of about 82 ppm, which exceeded values reported for well-aerated soils that consume atmospheric CO (65nM). Surface (0-0.2 cm depth interval) sediment slurries incubated under oxic conditions rapidly consumed CO, and methyl fluoride did not inhibit uptake, which indicated that neither ammonia nor methane oxidizers contributed to the observed activity. In contrast, aerobic CO uptake was inhibited by additions of readily available organic substrates (pyruvate, glucose and glycine), but not by cellulose. CO was also consumed by surface and sub-surface sediment slurries incubated under anaerobic conditions, but rates were less than during aerobic incubations. Molybdate and nitrate or nitrite, but not 2-bromoethanesulfonic acid, partially inhibited anaerobic uptake. These results suggest that sulfidogens and acetogens, but not dissimilatory nitrate reducers or methanogens, actively consume CO. Sediment-free plant roots also oxidized CO aerobically; rates for Spartina patens and Limonium carolinianum roots were significantly higher than rates for Spartina alterniflora roots. Thus plants may also impact CO cycling in estuarine environments.  相似文献   

11.
The oxygen and nutrient dynamics of the zooxanthellate, upside down jellyfish (Cassiopea sp.), were determined both in situ and during laboratory incubations under controlled light conditions. In the laboratory, Cassiopea exhibited a typical Photosynthesis–Irradiance (P–I) curve with photosynthesis increasing linearly with irradiance, until saturation was reached at an irradiance of ~400 μE m−2 s−1, with photosynthetic compensation (photosynthesis = respiration) being achieved at an irradiance of ~50 μE m−2 s−1. Under saturating irradiation, gross photosynthesis attained a rate of almost 3.5 mmol O2 kg WW−1 h−1, whereas the dark respiration rate averaged 0.6 mmol O2 kg WW−1 h−1. Based upon a period of saturating irradiance of 9 h, the ratio of daily gross photosynthesis to daily respiration was 2.04. Thus, photosynthetic carbon fixation was not only sufficient to meet the carbon demand of respiration, but also to potentially support a growth rate of ~3% per day. During dark incubations Cassiopea was a relatively minor source of inorganic N and P, with the high proportion of NO X (nitrate + nitrite) produced indicating that the jellyfish were colonised by nitrifying bacteria. Whereas, under saturating irradiance the jellyfish assimilated ammonium, NO X and phosphate from the bathing water. However, the quantities of inorganic nitrogen assimilated were small by comparison to carbon fixation rates and the jellyfish would need to exploit other sources of nitrogen, such as ingested zooplankton, in order to maintain balanced growth. During in situ incubations the presence of Cassiopea had major effects on benthic oxygen and nutrient dynamics, with jellyfish occupied patches of sediment having 3.6-fold higher oxygen consumption and 4.5-fold higher ammonium regeneration rates than adjacent patches of bare sediment under dark conditions. In contrast at saturating irradiance, jellyfish enhanced benthic photosynthetic oxygen production almost 100-fold compared to the sediment alone and created a small sink for inorganic nutrients, whereas unoccupied sediment patches were sources of inorganic nutrients to the water column. Overall, Cassiopea greatly enhanced the spatial and temporal heterogeneity of benthic fluxes and processes by creating “hotspots” of high activities which switched between being sources or sinks for oxygen and nutrients over diurnal irradiance cycles, as the metabolism of the jellyfish swapped between heterotrophy and net autotrophy.  相似文献   

12.
The potential for extracellular electron shuttles to stimulate RDX biodegradation was investigated with RDX-contaminated aquifer material. Electron shuttling compounds including anthraquinone-2,6-disulfonate (AQDS) and soluble humic substances stimulated RDX mineralization in aquifer sediment. RDX mass-loss was similar in electron shuttle amended and donor-alone treatments; however, the concentrations of nitroso metabolites, in particular TNX, and ring cleavage products (e.g., HCHO, MEDINA, NDAB, and NH4 +) were different in shuttle-amended incubations. Nitroso metabolites accumulated in the absence of electron shuttles (i.e., acetate alone). Most notably, 40–50% of [14C]-RDX was mineralized to 14CO2 in shuttle-amended incubations. Mineralization in acetate amended or unamended incubations was less than 12% within the same time frame. The primary differences in the presence of electron shuttles were the increased production of NDAB and formaldehyde. NDAB did not further degrade, but formaldehyde was not present at final time points, suggesting that it was the mineralization precursor for Fe(III)-reducing microorganisms. RDX was reduced concurrently with Fe(III) reduction rather than nitrate or sulfate reduction. Amplified 16S rDNA restriction analysis (ARDRA) indicated that unique Fe(III)-reducing microbial communities (β- and γ-proteobacteria) predominated in shuttle-amended incubations. These results demonstrate that indigenous Fe(III)-reducing microorganisms in RDX-contaminated environments utilize extracellular electron shuttles to enhance RDX mineralization. Electron shuttle-mediated RDX mineralization may become an effective in situ option for contaminated environments.  相似文献   

13.
The benthic oxygen demand and inorganic nutrient release have been investigated in the coastal zone of the Mid-Atlantic Bight of the United States using in situ and ship-board incubations to estimate fluxes across the sediment-water interface. Oxygen demand ranged from ca. 70 ml m−2 hr−1 nearshore in warm (25°C) muddy sediments to ca. 4 ml m−2 hr−1 in cold (6°C), coarse-grained sediments offshore. Ammonium ion flux was out of the sediments in all but 4 of 29 incubations, while nitrate was often found to be utilized within or on the sediments, decreasing in 10 of 29 incubations. Those locations with fluxes of nitrate out of the sediment had concentrations in the pore water that were generally high, sometimes up to several mM l−1. Nitrate fluxes were always well below those of ammonia, even where high almost equivalent concentrations of both NH4 and NO3 were found at the same locale. On George's Bank only 13 % of total N demand by the phytoplankton was estimated to be supplied by the benthos, whereas in New York Bight the supply amounted to 42 % of the demand. This difference can be attributed to higher pelagic biological and advective (mixing and upwelling) inputs to George's Bank compared to the relatively well stratified New York Bight in late summer and autumn.  相似文献   

14.
Denitrification in San Francisco Bay Intertidal Sediments   总被引:23,自引:17,他引:6       下载免费PDF全文
The acetylene block technique was employed to study denitrification in intertidal estuarine sediments. Addition of nitrate to sediment slurries stimulated denitrification. During the dry season, sediment-slurry denitrification rates displayed Michaelis-Menten kinetics, and ambient NO3 + NO2 concentrations (≤26 μM) were below the apparent Km (50 μM) for nitrate. During the rainy season, when ambient NO3 + NO2 concentrations were higher (37 to 89 μM), an accurate estimate of the Km could not be obtained. Endogenous denitrification activity was confined to the upper 3 cm of the sediment column. However, the addition of nitrate to deeper sediments demonstrated immediate N2O production, and potential activity existed at all depths sampled (the deepest was 15 cm). Loss of N2O in the presence of C2H2 was sometimes observed during these short-term sediment incubations. Experiments with sediment slurries and washed cell suspensions of a marine pseudomonad confirmed that this N2O loss was caused by incomplete blockage of N2O reductase by C2H2 at low nitrate concentrations. Areal estimates of denitrification (in the absence of added nitrate) ranged from 0.8 to 1.2 μmol of N2 m−2 h−1 (for undisturbed sediments) to 17 to 280 μmol of N2 m−2 h−1 (for shaken sediment slurries).  相似文献   

15.
The formation of14CO2 from 3 μg l−1 labelled chloroform was studied in anaerobic Dutch river sediments. All incubations were performed under anaerobic conditions. The observed first order mineralization kinetics showed half-lives of 2–37 days at 20°C in 12 muddy sediments. In contrast most of the sandy sediment samples did not show a mineralization of chloroform. Most probable number analysis revealed about 3.104 chloroform mineralizing bacteria per g of dry sediment in a muddy sediment and 1–2.103 chloroform mineralizing bacteria per g of dry sediment in a sandy sediment. Therefore the persistence of chloroform in sandy sediments is not caused by the absence of chloroform mineralizing bacteria but by the inactivity of these bacteria. This inactivity of the sandy sediments might allow chloroform from infiltrating river water to reach the groundwater. Mud samples from a relatively unpolluted site showed a similar chloroform mineralization rate compared with the polluted sediments from the rivers Rhine and Meuse. The data indicate that the reductive dechlorination of aliphatic compounds is not influenced at the polluted sites.  相似文献   

16.
Soil inorganic nitrogen pools, net mineralization and net nitrification rates were compared during the dry season along a chronosequence of upland (terra firme) forest, 3-, 9- and 20-year-old pastures in the western Brazilian Amazon Basin state of Rondônia to investigate the influence of forest conversion to pasture on soil nitrogen cycles. Surface soil (0 to 10 cm) from forest had larger extractable inorganic nitrogen pools than pasture soils. In the forest, NO 3 pools equaled or exceeded NH 4 + pools, while pasture inorganic N pools consisted almost exclusively of NH 4 + . Rates of net N mineralization and net nitrification in seven -day laboratory incubations were higher in the seven - day forest than in the pastures. Net N mineralization rates did not differ significantly among different-aged pastures, but net nitrification rates were significantly lower in the 20-year-old pasture. Higher net N mineralization and net nitrification rates were measured in laboratory and in situ incubations of sieved soil, compared with in situ incubations of intact soil cores. Rates calculated in seven-day incubations were higher than determined by longer incubations. Sieving may increase N mineralization and/or decrease N immobilization compared with intact cores. We concluded that 7-day laboratory incubation of sieved soil was the most useful index for comparing N availability across the chronosequence of forest and pasture sites. High net nitrification rates in forest soils suggest a potential for NO 3 losses either through leaching or gaseous emissions.  相似文献   

17.
Arctic regions may be particularly sensitive to climate warming and, consequently, rates of carbon mineralization in warming marine sediment may also be affected. Using long-term (24 months) incubation experiments at 0°C, 10°C and 20°C, the temperature response of metabolic activity and community composition of sulfate-reducing bacteria were studied in the permanently cold sediment of north-western Svalbard (Arctic Ocean) and compared with a temperate habitat with seasonally varying temperature (German Bight, North Sea). Short-term 35S-sulfate tracer incubations in a temperature-gradient block (between −3.5°C and +40°C) were used to assess variations in sulfate reduction rates during the course of the experiment. Warming of arctic sediment resulted in a gradual increase of the temperature optima ( T opt) for sulfate reduction suggesting a positive selection of psychrotolerant/mesophilic sulfate-reducing bacteria (SRB). However, high rates at in situ temperatures compared with maximum rates showed the predominance of psychrophilic SRB even at high incubation temperatures. Changing apparent activation energies ( E a) showed that increasing temperatures had an initial negative impact on sulfate reduction that was weaker after prolonged incubations, which could imply an acclimatization response rather than a selection process of the SRB community. The microbial community composition was analysed by targeting the 16S ribosomal RNA using catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH). The results showed the decline of specific groups of SRB and confirmed a strong impact of increasing temperatures on the microbial community composition of arctic sediment. Conversely, in seasonally changing sediment sulfate reduction rates and sulfate-reducing bacterial abundance changed little in response to changing temperature.  相似文献   

18.
Factors controlling seasonal variations in benthic metabolism (O2 flux) and dissolved inorganic nitrogen (DIN) fluxes were examined during a 12–14 month period at three intertidal Wadden Sea stations. Since the flux measurements were made as small-scale laboratory core incubations, the results are primarily related to the microbenthic community (microalgae, bacteria, micro-, meio- and small macrofauna) and cannot be considered representative of the total benthic community in the Wadden Sea. Furthermore, it has to be emphasized that light intensity during day-time simulations were constant and saturating at all times. Benthic primary production and oxygen uptake appeared to be temperature dependent with a ‘seasonal Q10’ of 1.7–1.8 and 2.7–4.3, respectively. Inundation had no effect on oxygen fluxes as evidenced by similar sediment respiration with and without water cover. A stronger temperature dependence of primary production in muddy than in sandy sediment indicated that the overall control in the latter may be complex due to factors like macrofaunal grazing and nutrient availability. Benthic respiration may not be controlled by temperature alone, as sedimentary organic matter content correlated significantly with both temperature and benthic respiration. Annual gross primary production in high intertidal sandy sediment was 10 and 50% higher than in low intertidal sandy and muddy sediments, respectively. Since annual benthic community respiration was 2 times higher in muddy than sandy sediments, the annual net primary production was about 0 in the former and 17–19 mol C m?2 yr?1 in the latter. However, heterotrophic contribution by larger faunal components as well as removal of organic carbon by waves and tidal currents, which are not included here, may balance the budget at the sandy stations. There was no or only weak relationships between (light and dark) DIN exchange and factors like temperature, sedimentary organic content, and oxygen fluxes. Factors related to nutrient fluxes, such as denitrification and nutrient concentration in the overlying water, may have hampered any such relationships. In fact, DIN fluxes at all three stations appeared to be strongly controlled by DIN concentrations in the overlying water. On an annual basis, the sediment appeared to be a net sink for DIN.  相似文献   

19.
Benthic nutrient fluxes in a eutrophic,polymictic lake   总被引:2,自引:0,他引:2  
Sediment release rates of soluble reactive phosphorus (SRP) and ammonium (NH4) were determined seasonally at three sites (water depth 7, 14 and 20 m) in Lake Rotorua using in situ benthic chamber incubations. Rates of release of SRP ranged from 2.2 to 85.6 mg P m−2 d−1 and were largely independent of dissolved oxygen (DO) concentration. Two phases of NH4 release were observed in the chamber incubations; high initial rates of up to 2,200 mg N m−2 d−1 in the first 12 h of deployment followed by lower rates of up to 270 mg N m−2 d−1 in the remaining 36 h of deployment. Releases of SRP and NH4 were highest in summer and at the deepest of the three sites. High organic matter supply rates to the sediments may be important for sustaining high rates of sediment nutrient release. A nutrient budget of Lake Rotorua indicates that internal nutrient sources derived from benthic fluxes are more important than external nutrient sources to the lake.  相似文献   

20.
Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4 + and dissolved Si. Although effluxes of PO4 3− were not altered significantly, changes were observed in sediment PO4 3− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters, and that the link between biodiversity and ecosystem function is likely to be affected by a range of factors in complex, natural environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号