首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
SC1 is an extracellular matrix molecule prominent in the mammalian brain. In the cerebellum, SC1 localizes to Bergmann glial cells and perisynaptic glial processes that envelop synapses in the molecular layer. In the present study, confocal microscopy revealed a punctate distribution of SC1 along Bergmann glial fibers that colocalized with the intermediate filament GFAP when fibers were viewed in cross-section. Immunoelectron microscopy showed that the punctate SC1 pattern corresponded to the localization of SC1 in multivesicular bodies situated within Bergmann glial fibers. The pattern of SC1 localization was not disrupted following hyperthermia or pilocarpine-induced status epilepticus. The present study suggests that SC1 protein may reach its destination in perisynaptic glial processes and glial endfeet by transport along Bergmann glial fibers in multivesicular bodies and that this process is preserved following stress.  相似文献   

2.
脊髓损伤后胶质瘢痕的形成是阻碍神经恢复的关键原因之一。碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)具有良好的神经保护及促进脊髓损伤的修复作用,然而其对于胶质瘢痕的影响及其机制仍不清楚。本研究通过采用血管动脉夹(30 g)夹闭雌性SD大鼠脊髓2 min造成急性脊髓损伤模型并予以每天皮下注射bFGF(80 μg/kg),探讨bFGF促进脊髓损伤的恢复作用是否涉及到胶质瘢痕调控和Nogo-A/NgR信号的相关机制。通过检测损伤后28 d,各组BBB评分和斜板试验,发现bFGF显著促进脊髓损伤后大鼠运动功能的恢复。HE及尼氏染色显示,bFGF处理组相对于生理盐水处理组,其神经元明显增多,空洞面积减少。同时,星形胶质细胞标记物GFAP免疫荧光结果表明,bFGF减少胶质瘢痕形成,抑制星形胶质细胞过度激活。同样,通过Western 印迹检测发现,bFGF处理后,胶质瘢痕相关蛋白(如GFAP, neurocan)以及神经突生长抑制蛋白(Nogo-A)信号通路相关蛋白质表达量下降。上述结果表明,bFGF可能通过抑制Nogo-A信号蛋白的表达,从而抑制胶质瘢痕的形成,促进脊髓损伤的恢复。此机制研究为脊髓损伤的治疗和恢复提供全新的思路和药物靶点。  相似文献   

3.
In multiple sclerosis, microglia/macrophage activation and astrocyte reactivity are important components of the lesion environment that can impact remyelination. The current study characterizes these glial populations relative to expression of candidate regulatory molecules in cuprizone demyelinated corpus callosum. Importantly, periods of recovery after acute or chronic cuprizone demyelination are examined to compare conditions of efficient versus limited remyelination, respectively. Microglial activation attenuates after early demyelination. In contrast, astrocyte reactivity persists throughout demyelination and a 6-week recovery period following either acute or chronic demyelination. This astrocyte reaction is characterized by (a) early proliferation, (b) increased expression of GFAP (glial fibrillary acidic protein), Vim (vimentin), Fn1 (fibronectin) and CSPGs (chondroitin sulphate proteoglycans) and (c) elaboration of a dense network of processes. Glial processes elongated in the axonal plane persist throughout lesion areas during both the robust remyelination that follows acute demyelination and the partial remyelination that follows chronic demyelination. However, prolonged astrocyte reactivity with chronic cuprizone treatment does not progress to barrier formation, i.e. dense compaction of astrocyte processes to wall off the lesion area. Multiple candidate growth factors and inflammatory signals in the lesion environment show strong correlations with GFAP across the acute cuprizone demyelination and recovery time course, yet there is more divergence across the progression of chronic cuprizone demyelination and recovery. However, differential glial scar formation does not appear to be responsible for differential remyelination during recovery in the cuprizone model. The astrocyte phenotype and lesion characteristics in this demyelination model inform studies to identify triggers of non-remyelinating sclerosis in chronic multiple sclerosis lesions.  相似文献   

4.
Reactive gliosis, observed in numerous pathological states, leads to the formation of a glial scar that is believed to impede axonal regeneration. Astrocyte reactivity can be initiated both in vitro and in vivo by various cytokines. Thus, the aim of this study was to investigate if suramin, a polysulfonated napthylurea that has been shown to inhibit the binding of many different cytokines to their cell surface receptors, could attenuate the glial response after brain injury. A single dose of suramin (5 μl, 75 μM) or saline vehicle was injected intracerebrally through the same needle used to make the stab wound at the time of lesioning. Suramin-treated animals showed an obvious reduction in several parameters of CNS inflammation: cellular proliferation, GFAP levels, and tenascin-C immunoreactivity were reduced in suramin-treated as compared to control animals at early time points. GFAP immunoreactivity was strikingly reduced at 3 days after injury, as confirmed by Western blot analysis. This reduction was transient, however, in that the difference in GFAP expression between suramin-treated and control animals was less apparent at 7 days and had disappeared by 30 days after injury. Likewise, fewer BrdU-positive cells were noted in treated versus control tissue at 1 and 3 days, but this difference was not significant by 7 days. Moreover, tenascin immunoreactivity was significantly diminished at 24 h as confirmed by Western blot analysis in suramin-treated lesion areas, which is analogous to our observations that suramin can antagonize tenascin expression by cultured astrocytes treated with bFGF. In addition, examination of the corpus callosum of saline-treated animals 30 days post-trauma revealed a disruption of the fiber tract within the lesion site, while suramin-treated animals displayed numerous fibers spanning the lesion. These results demonstrate that a single injection of suramin transiently inhibits the gliotic response, which may be sufficient to ameliorate subsequent tissue damage.  相似文献   

5.
Spinal cord injury (SCI) results in cell death and tissue destruction, and ultimately cavitation followed by the formation of lesion scars at the injury site. The lesion scars include an astrocytic component (glial scar) and a fibroblastic component (connective tissue scar). The purpose of the present study is to determine if X-irradiation could minimize the formation of lesion scars and reduce the levels of chondroitin sulfate proteoglycans (CSPGs) in the contusion SCI model of the adult rat. Two weeks after SCI, a connective tissue scar formed at the injury site consisting primarily of fibroblasts and exhibits strong CSPG immunoreactivity. The fibroblasts might originate from the connective tissue of pia mater or arachnoid mater. At the same time, reactive astrocytes in the spared tissue accumulate surrounding the lesion cavity to form a thick glial scar with significant enhancement of glial fibrillary acidic protein (GFAP) and CSPG immunoreactivity. After X-irradiation (40 Gy) of the injury site 2 days post-injury, that results in an attenuated dose to the lesion, the connective tissue scar was not observed, and accordingly, almost no CSPG immunoreactivity was detected at this area. Meanwhile, the glial scar and its CSPG immunoreactivity were prominently reduced. X-irradiation did not show significant improvement in locomotor recovery, but resulted in a slight delay of body weight recovery following injury. This preparative treatment could be used to reduce secondary scarring in the lesion resulting in an enriched site for further treatment such as growth related transplantation.  相似文献   

6.
A peroxidase-conjugated avidin–biotin complex was used to detect endogenous biotin-containing proteins in mouse cerebellum. By this method, Bergmann glial cells were found to be strongly labelled in the adult mouse cerebellum. Developmentally, cells in the granular layer, probably astrocytes, appeared to be labelled around postnatal 10-day (P10). Their labelling decreased after P20, although the positive-labelling remained in the Bergmann glial cells up to the adult stage. The findings were confirmed by using a Alexa Fluor 488-conjugated streptavidin technique. The labelling was not affected by routine hydrogen peroxide treatment, but it was eliminated by avidin–biotin blocking. By another transblot method, the reactive proteins in the mouse cerebellum were found to be 120?kDa (the strongest one) and 75?kDa. For electron microscopy, a gold-conjugated anti-biotin antibody was immunoreacted to the mitochondria of Bergmann glial cells. These results suggest that endogenous biotin-containing proteins are abundant in the Bergmann glial cells. Therefore, the avidin–biotin complex method is useful for detecting Bergmann glial cells, probably because of the difference of biotin metabolism in the cerebellar glial cells.  相似文献   

7.
We recently reported that by postnatal day 40 the activity of sn-glycerol-3-phosphate dehydrogenase (GPDH) was significantly depressed in the cerebellum of genetic-hypothyroid mutant mice. This mutant mouse-GPDH combination was used in the present study to define the critical time period during which thyroid hormone (T4) and growth hormone (GH) are essential for maturation of Bergmann glial cells. Our findings are that (a) induction of GPDH activity in the Bergmann glial cell is dependent on T4, (b) T4 is most effective when administered during the second 20 days of postnatal life, (c) the effect of GH on GPDH activity is complementary to or synergistic with that of T4, and (d) Bergmann glial cells and radial glial fibers of the mutant mice contain immunoreactive GPDH following various hormonal treatments. These results suggest that T4 is indispensable for the maturation of Bergmann glial cells.  相似文献   

8.
A peroxidase-conjugated avidin-biotin complex was used to detect endogenous biotin-containing proteins in mouse cerebellum. By this method, Bergmann glial cells were found to be strongly labelled in the adult mouse cerebellum. Developmentally, cells in the granular layer, probably astrocytes, appeared to be labelled around postnatal 10-day (P10). Their labelling decreased after P20, although the positive-labelling remained in the Bergmann glial cells up to the adult stage. The findings were confirmed by using a Alexa Fluor 488-conjugated streptavidin technique. The labelling was not affected by routine hydrogen peroxide treatment, but it was eliminated by avidin-biotin blocking. By another transblot method, the reactive proteins in the mouse cerebellum were found to be 120 kDa (the strongest one) and 75 kDa. For electron microscopy, a gold-conjugated anti-biotin antibody was immunoreacted to the mitochondria of Bergmann glial cells. These results suggest that endogenous biotin-containing proteins are abundant in the Bergmann glial cells. Therefore, the avidin-biotin complex method is useful for detecting Bergmann glial cells, probably because of the difference of biotin metabolism in the cerebellar glial cells.  相似文献   

9.
In the present study effect of dietary restriction (DR) on neuronal plasticity markers neural cell adhesion molecule (NCAM) and its polysialylated form PSA-NCAM and astrocytic marker glial fibrillary acidic protein (GFAP) was assessed following brain injury by intraperitoneal injection of kainic acid or physiological saline in adult male wistar rats. After 7-day recovery period, rats were sacrificed to study the NCAM-ir, PSA-NCAM-ir, and GFAP-ir in all the groups with immunohistofluorescence and immunoblotting. We noticed increase in NCAM and PSA-NCAM expression after KA excitotoxicity, and DR enhanced this increase in NCAM and PSA-NCAM expression. A marked increase in NCAM and PSA-NCAM-ir was observed in CA3 region of hippocampus, subgranular region and hilus of dentate gyrus, hypothalamus, and piriform cortex in both vehicle treated as well KA-treated DR rats as compared to vehicle and KA-treated AL rats, respectively. Whenever, CNS is damaged it undergoes an injury response called reactive gliosis. Our study confirmed the neuroprotective role of DR as evident from attenuation of GFAP-ir and enhanced levels of neuronal plasticity markers NCAM and PSA-NCAM. The potential beneficial role of DR regimen in attenuating KA-induced reactive astrogliosis and enhancing expression of neuronal plasticity markers may point the way to new strategies of intervention therapy by DR that will facilitate recovery from ageing and disease related neuronal dysfunction and enhance restorative processes by modulating astrogliosis.  相似文献   

10.
目的探讨Olig2在cuprizone诱导的急性脱髓鞘动物模型中的表达变化规律。方法应用含0.2%cuprizone饲料饲育小鼠,通过调控饲育时间,造成神经脱髓鞘及髓鞘再生,使用免疫荧光染色和实时定量PCR(qRT-PCR)的方法,观察模型髓鞘脱失后及髓鞘再生2周后Olig2、少突胶质细胞碱性髓鞘蛋白(MBP)及星形胶质细胞神经胶质酸性蛋白(GFAP)的表达变化。结果 Cuprizone饲育6周后,动物胼胝体白质内髓鞘脱失严重,在恢复正常饲料后,髓鞘逐渐恢复正常结构。正常小鼠大脑Olig2低水平表达。髓鞘脱失后Olig2、GFAP表达增高,并可见Olig2+/GFAP+细胞,MBP表达明显降低。髓鞘再生2周后Olig2表达降低,MBP、GFAP表达增高。结论 Olig2基因在cuprizone诱导的脱髓鞘模型中的表达变化,提示Olig2可能参与祖细胞向有活性的星形胶质细胞的分化过程,并与胶质瘢痕的形成有关。  相似文献   

11.
本文研究了脑穿刺损伤后伤灶组织中大胶质细胞的变化、性激素对脑损伤后星形胶质细胞反应的影响,以及反义胶质原纤维酸性蛋白(GFAP)逆转录病毒表达载体对Ast形态结构,反应性胶质化及胶质瘢痕形成的作用。结果表明,胶质瘢痕中增生的大胶质细胞主要是Ast,GFAP对维持Ast的形态结构及功能具有重要作用;少突胶质细胞在胶质瘢痕形成过程中不是反应活跃的细胞成分;性激素对Ast的反应性胶质化有一定程度的抑制作  相似文献   

12.
13.
Zhang L  Zhang WP  Chen KD  Qian XD  Fang SH  Wei EQ 《Life sciences》2007,80(6):530-537
Traumatic brain injury induces neuron damage in early phase, and astrogliosis and the formation of the glial scar in late phase. Caffeic acid (3, 4-dihydroxycinnamic acid), one of the natural phenolic compounds, exerts neuroprotective effects against ischemic brain injuries with anti-oxidant and anti-inflammatory properties, and by scavenging reactive species. However, whether caffeic acid has protective effects against traumatic brain injury is unknown. Therefore, we determined the effect of caffeic acid on the lesion in the early (1 day) and late phases (7 to 28 days) of cryoinjury in mice. We found that caffeic acid (10 and 50 mg/kg, i.p., for 7 days after cryoinjury) reduced the lesion area and attenuated the neuron loss around the lesion core 1 to 28 days, but attenuated the neuron loss in the lesion core only 1 day after cryoinjury. Moreover, caffeic acid attenuated astrocyte proliferation, glial scar wall formation and glial fibrillary acidic protein (GFAP) protein expression in the late phase of cryoinjury (7 to 28 days). Caffeic acid also inhibited the reduction of superoxide dismutase activity and the increase in malondialdehyde content in the brain 1 day after cryoinjury. These results indicate that caffeic acid exerts a protective effect in traumatic brain injury, especially on glial scar formation in the late phase, which at least is associated with its anti-oxidant ability.  相似文献   

14.
Impact spinal cord injury (20 g-cm) was induced in rat by weight drop. The immunoreactivity of mcalpain was examined in the lesion and adjacent areas of the cord following trauma. Increased calpain immunoreactivity was evident in the lesion compared to control and the immunostaining intensity progressively increased after injury. The calpain immunoreactivity was also increased in tissue adjacent to the lesion. mCalpain immunoreactivity was significantly stronger in glial and endothelial cells, motor neurons and nerve fibers in the lesion. The calpain immunoreactivity also increased in astrocytes and microglial cells in the adjacent areas. Proliferation of microglia and astrocytes identified by GSA histochemical staining and GFAP immunostaining, respectively, was seen at one and three days after injury. Many motor neurons in the ventral horn showed increased calpain immunoreactivity and were shrunken in the lesion. These studies indicate a pivotal role for calpain and the involvement of glial cells in the tissue destruction in spinal cord injury. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

15.
In response to injury of the central nervous system, astrocytes become reactive and express high levels of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP), vimentin, and nestin. We have shown that astrocytes in mice deficient for both GFAP and vimentin (GFAP-/-vim-/-) cannot form IFs even when nestin is expressed and are thus devoid of IFs in their reactive state. Here, we have studied the reaction to injury in the central nervous system in GFAP-/-, vimentin-/-, or GFAP-/-vim-/- mice. Glial scar formation appeared normal after spinal cord or brain lesions in GFAP-/- or vimentin-/- mice, but was impaired in GFAP-/-vim-/- mice that developed less dense scars frequently accompanied by bleeding. These results show that GFAP and vimentin are required for proper glial scar formation in the injured central nervous system and that some degree of functional overlap exists between these IF proteins.  相似文献   

16.
D N Singh  T C Mathew 《Acta anatomica》1989,134(2):156-159
The morphological change of cerebral cortex astrocytes from protoplasmic to glial fibrillary acidic protein (GFAP)-containing cells is induced by injury. Protoplasmic astrocytes that contain no detectable amount of GFAP become filled with GFAP and their processes extend to form the glial scar around the wound. It is hypothesized that this transformation is induced by cAMP and neurotransmitters released from damaged neuronal cells. A similar mechanism may be present in other brain regions following injury or disease.  相似文献   

17.
18.
On the basis of our previous findings that a 50,000-dalton protein (GR-50) shows a marked increase in the hypoplastic cerebellum of jaundiced homozygous Gunn rats and its electrophoretic behavior is similar to that of glial fibrillary acidic protein (GFAP), we tried to identify GR-50 as GFAP by two-dimensional electrophoresis of rat cerebellar membrane proteins using an improved immunoblotting method. In this method a blot immunostained for a specific antigen was also visualized for other proteins, thereby enabling us to determine the location of the antigen on the blot more precisely. With the methodology it was found that GFAP antigen occupied exactly the same position as GR-50 on the blot, suggesting strongly the identity of both proteins. Immunohistochemical studies revealed that in the cerebellum of homozygotes compared with that of heterozygotes GFAP antigen was greatly increased and that it was especially rich in the homozygous rat cerebellar lobules with a high degree of hypoplasia. Further, it was shown that not only the fibers of the Bergmann glial cells but also their somata were intensely immunostained in the affected lobules. A 47,000-dalton protein (SG-47), which has been reported to be increased in staggerer mutant mice with cerebellar hypoplasia, also immunoreacted with the antiserum to GFAP.  相似文献   

19.
The Bergmann glia is a unipolar astrocyte in the cerebellar cortex, displaying a tight association with Purkinje cells. The cell bodies of Bergmann glia are located in a row around Purkinje cell somata; they extend radially arranged Bergmann fibers which enwrap the synapses on the Purkinje cell dendrites. It is well known that Bergmann glial somata migrate from the ventricular zone through the mantle zone, forming an epithelium-like lining in the Purkinje cell layer during development. However, the mechanism of the monolayer formation of Bergmann glia is poorly understood. Several reports have suggested that Notch signaling plays instructive roles in promoting the identities of several types of glial cells, including Bergmann glia. Moreover, Notch receptors are expressed in Bergmann glia during development. Here, we have deleted the Notch1, Notch2 and RBP-J genes in the Bergmann glia by GFAP-driven, Cre-mediated recombination, to study the role of Notch-RBP-J-signaling in the monolayer formation of Bergmann glia. Notch1/2- and RBP-J-conditional mutant mice showed disorganization of Bergmann fibers, irregularities of the Bergmann glial lining and aberrant localization of Bergmann glia in the molecular layer. Thus, Notch-RBP-J signaling plays crucial roles in the monolayer formation and morphogenesis of Bergmann glia.  相似文献   

20.
Summary Scanning electron microscopy and cryofracture technique were applied to study neuronal architecture and synaptic connections of the human cerebellum. Samples were processed according to the technique of Humphreys et al. (1975) with minor modifications. The granule cells exhibit unbranched filiform axons and coniform dendritic processes. The latter show typical claw-like endings making gearing type synaptic contacts with mossy fiber rosettes. The unattached mossy rosettes appear as solid club-like structures. Some fractographs show individual granule cells, Golgi neurons and glomerular islands. The climbing fibers and their Scheibel's collaterals were also characterized. In the Purkinje layer the surface fracture was produced at the level of the Bergmann glial cells, which are selectively removed, allowing us to visualize the rough surface of Purkinje cells and the supra- and infraganglionic plexuses of basket cell axons which appeared as entangled threads. In the molecular layer the three-dimensional configuration of the Purkinje secondary and tertiary dendritic branches was obtained. The filiform parallel fibers make cruciform synaptic contacts with the Purkinje dendritic spines. The appearance of stellate neuronal somata closely resembled that of the granule cells. The subpial terminals of Bergmann fibers appeared attached to the exterior of the folia forming the rough surfaced external glial limiting membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号