首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Paired toad urinary bladders were prepared without or with an osmotic gradient (175 mosm) across them, stimulated for 2.5 (n=6), 5 (n=6), 30 (n=6) or 60 (n=6) min with ADH (20 mU/ml), and studied by freeze-fracture electron microscopy. Water permeability at these times was assessed in additional bladders (n=6 for each case) after tissue fixation according to the technique of Eggena. After both 60 and 30 min of ADH stimulation, the presence of a gradient compared with the absence of one was associated with fewer aggregates (242±35vs. 382±14 ×235 m–2 at 60 min,P<0.01; 279±36vs. 470±51 ×235 m–2 at 30 min,P<0.01) and lower water permeability (8.4±1.1vs. 18.8±1.8g×min–1×cm–1 ×mosm –1 at60min,P<0.005; 9.2±1.0vs. 22.0±2.1 g ×min–1×cm–2×mosm –1 at 30 min,P<0.001). In addition, with a gradient both maximum water permeability and maximum aggregate frequency were reached nearly together; a similar correspondence occurred without a gradient. We conclude that in the presence of an osmotic gradient both the ADH-associated aggregates and the water permeability response to ADH are prevented from reaching the higher levels observed in bladders not exposed to a gradient.  相似文献   

2.
Unidirectional and net water movements were determined at minute intervals in frog urinary bladders. The changes in both parameters were followed, during the action of antidiuretic hormone (ADH), at different temperatures and stirring conditions. After correction for external unstirred layer effects, the ratio of the osmotic (Pf) and diffusional (Pd) permeability coefficients was remarkably constant, at different times and in different experimental conditions. In the presence of ADH the delta Pf/delta Pd ratio in the mucosal border was probably greater than 9. On the other hand, in nonstimulated preparations the ratio was smaller, and probably not different from 1. These results, together with previous observations indicating that other small molecules (like urea) are excluded from the ADH-induced channel, might indicate that single-file water movement can occur through this structure. Alternatively, the delta Pf/delta Pd ratio could result from a complex geometric arrangement in series with the aqueous pore.  相似文献   

3.
Toad bladders exposed to vasopressin (ADH) and then fixed on the mucosal surface with 1% glutaraldehyde were highly permeable to water and to urea compared to control bladders fixed in the absence of hormone. When identical conditions of fixation were were used, but the concentration of glutaraldehyde was decreased to 0.25%, the ADH-induced increase in membrane permeability to urea was preserved whereas water permeability was not. About 74% of the hormone-induced urea permeability sites were preserved by glutaraldehyde and were stable to changes in temperature as suggested by a constant value for the activation energy of urea movement of 5.4 kcal/mole (4-33 degrees C). In other studies bladders were exposed at low temperatures to 0.17% glutaraldehyde applied either to the serosal or the mucosal surface. The ADH-induced increase in membrane permeability to urea, bulk water, and tritiated water was well preserved with serosal fixation, but not with mucosal fixation. The observation that the urea pathway can be selectively preserved with 0.25% glutaraldehyde applied to the mucosa indicates that this structure is more accessible and (or) more sensitive to low-dose glutaraldehyde than is the ADH-induced water pathway. The observation that glutaraldehyde is more effective in stabilizing the ADH-induced urea channels from the serosal than from the mucosal surface indicates that these channels are not fixed at the extracellular surface of the apical plasma membrane. It appears, rather, that glutaraldehyde exerts its effects from an intracellular position, where it cross-links components of the urea channels at the cytoplasmic surface of the apical membrane and (or) inactivates the intracellular machinery responsible for the removal or dispersal of the ADH-induced urea permeability sites.  相似文献   

4.
Summary The transepithelial water permeability in frog urinary bladder is believed to be essentially dependent on the ADH-regulated apical water permeability. To get a better understanding of the transmural water movement, the diffusional water permeability (P d) of the basolateral membrane of urinary bladder was studied. Access to this post-luminal barrier was made possible by perforating the apical membrane with amphotericin B. The addition of this antibiotic increasedP d from 1.12±0.10×10–4 cm/sec (n=7) to 4.08±0.33×10–4 cm/sec (n=7). The effect of mercuric sulfhydryl reagents, which are commonly used to characterize water channels, was tested on amphotericin B-treated bladders. HgCl2 (10–3 m) decreasedP d by 52% andpara-chloromercuribenzoic acid (pCMB) (1.4×10–4 m) by 34%. The activation energy for the diffusional water transport was found to increase from 4.52±0.23 kcal/mol (n=3), in the control situation, to 9.99±0.91 kcal/mol (n=4) in the presence of 1.4×10–4 m pCMB. Our second approach was to measure the kinetics of water efflux, by stop-flow light scattering, on isolated epithelial cells from urinary bladders.pCMB (0.5 or 1.4×10–4 m) was found to inhibit water exit by 91±2%. These data strongly support the existence of proteins responsible for water transport across the basolateral membrane, which are permanently present.  相似文献   

5.
We previously reported that HgCl2 inhibits water and urea flux in tissues fixed with glutaraldehyde after antidiuretic hormone (ADH) stimulation and suggested that the ADH-induced water channel may share characteristics of the red blood cell and proximal tubule water transport pathway. To determine the specificity of mercury's action, we examined the effect of numerous other metals. In tissues fixed after ADH stimulation, water flow and urea and sucrose permeabilities are maintained from mucosal bath pH 2.5 through pH 12. Several metals including Ba, Co, Fe, Sr and Zn did not alter flux. Al, Cd, La, Li, Pb and U inhibited urea permeability but not water flow. At pH 2.8, Cu inhibited water flow by 30% and urea permeability by 50%. At pH 4.9–7.4, Cu inhibited urea permeability but not water flow. At pH 3.0, Pt inhibited flow in ADH-pretreated tissues. The inhibitory effect was not present at pH>3.0. At pH<3.0, Au inhibited flow by 90% in tissues fixed after pretreatment with ADH but increased the permeability of tissues fixed in the absence of ADH. Ag inhibited flow by 70% but also increased sucrose, urea, and basal permeabilities. This suggests that Ag and Au disrupt epithelial integrity. These results indicate that at physiologic pH, the ADH-induced water channel is specifically blocked by Hg but not by other metals. This specificity may reflect the presence of a large number of sulfhydryl groups in the water channel.  相似文献   

6.
Summary Antidiuretic hormone increases the water permeability of the cortical collecting tubule and causes the appearance of intramembrane particle aggregates in the apical plasma membrane of principal cells. Particle aggregates are located in apical membrane coated pits during stimulation of collecting ducts with ADHin situ. Removal of ADH causes a rapid decline in water permeability. We evaluated apical membrane retrieval associated with removal of ADH by studying the endocytosis of horseradish peroxidase (HRP) from an isotonic solution in the lumen. HRP uptake was quantified enzymatically and its intracellular distribution examined by electron microscopy. When tubules were perfused with HRP for 20 min in the absence of ADH, HRP uptake was 0.5±0.3 pg/min/m tubule length (n=6). The uptake of HRP in tubules exposed continuously to ADH during the 20-min HRP perfusion period was 1.3±0.8 pg/min/m (n=8). HPR uptake increased markedly to 3.2±1.1 pg/min/m (n=14), when the 20-min period of perfusion with HRP began immediately after removal of ADH from the peritubular bath. Endocytosis of HRP occurred in both principal and intercalated cells via apical membrane coated pits. We suggest that the rapid decline in cortical collecting duct water permeability which occurs following removal of ADH is mediated by retrieval of water permeable membrane via coated pits.  相似文献   

7.
Summary The extracellular Ca2+ requirement for antidiuretic hormone (ADH) stimulation of water permeability in the toad urinary bladder has been critically examined. The polarity of the tissue was maintained with 1mm Ca2+ in the mucosal bathing medium and a serosal bath nominally free of Ca2+. Under these condition, ADH-induced osmotic water flow was inhibited by more than 60% while enhancement of the diffusional permeability to water was unaffected. Structural studies revealed that low serosal Ca2+ led to parallel alterations in epithelial architecture that amounted to a significant distorition of the osmotic water pathway. Prevention of these alterations, or restoration of normal cell-cell contact showed that the reduction of serosal Ca2+ did not restrict hormonal action,per se, but that it resulted in a weakening of cell-cell junctions such that intercellular space distension during water flow occurred to a point where the geometric conditions for maintenance of osmotic flow were compromised. We conclude that extracellular Ca2+ is not a requirement for the molecular aspects of ADH action but that, in its absence, a direct measurement of ADH-induced osmotic flow proves to be an inaccurate index of the hormone-generated changes in epithelial transport characteristics. Under certain conditions the ADH-effect on the tissue's hydraulic permeability is probably best assessed by measurement of the diffusional permability to water; although accuracy in this determination is difficult, it is not as strongly dependent on tissue geometry.  相似文献   

8.
Summary Antidiuretic hormone (ADH) increases the apical (external facing) membrane water permeability of granular cells that line the toad urinary bladder. In response to ADH, cytoplasmic vesicles called aggrephores fuse with the apical plasma membrane and insert particle aggregates which are visualized by freeze-fracture electron microscopy. Aggrephores contain particle aggregates within their limiting membranes. It is generally accepted that particle aggregates are or are related to water channels. High rates of transepithelial water flow during ADH stimulation and subsequent hormone removal decrease water permeability and cause the endocytosis of apical membrane and aggrephores which retrieve particle aggregates. We loaded the particle aggregate-rich endocytic vesicles with horseradish peroxidase (HRP) during ADH stimulation and removal. Epithelial cells were isolated and homogenized, and a subcellular fraction was enriched for sequestered HRP obtained. The HRP-enriched membrane fraction was subjected to a density shifting maneuver (Courtoy et al.,J. Cell Biol. 98:870, 1984), which yielded a purified membrane fraction containing vesicles with entrapped HRP. The density shifted vesicles were composed of approximately 20 proteins including prominent species of 55, 17 and 7 kD. Proteins of these molecular weights appear on the apical surface of ADH-stimulated bladders, but not the apical surface of control bladders. Therefore, we believe these density shifted vesicles contain proteins involved in the ADH-stimulated water permeability response, possibly components of particle aggregates and/or water channels.  相似文献   

9.
Summary Urea transport across amphibian membranes is influenced by interactions with the membrane, the solvent and other solutes. One case of solute interaction, that in which the two species are chemically identical, is investigated here. Because of the effects of hypertonic urea on permeability, the demonstration of interaction required consideration of the ratior of bidirectional tracer permeabilities. Mucosal-to-serosal (MS) and serosal-to-mucosal (MS) tracer urea fluxes were determined in paired toad urinary bladders, in the absence and presence of abundant urea. In the control state,r was 1.0. Addition of 0.3m urea toM increasedr, and toS decreasedr. These results indicate coupling of abundant and tracer urea flows (isotope interaction), probably occurring in specialized regions. The effects persisted after the addition of antidiuretic hormone, despite the opposing influence of osmotic water flow. Quantitatively different effects of mucosal and serosal hypertonicity, both with and without antidiuretic hormone, are explicable in terms of heterogeneous parallel and series permeability barriers.  相似文献   

10.
Summary We recently described a method by which the resistance to water flow of the luminal membrane of ADH-stimulated toad bladder can be quantitatively distinguished from that of barriers lying in series with it. This method requires estimates of both total bladder water permeability (assessed by transbladder osmotic water flow at constant gradient) and luminal membrane water permeability (assessed by quantitation of the frequency of ADH-induced luminal membrane particle aggregates). In the present study we examined the effect of bladder distension on transepithelial osmotic water flow before and during maximal ADH stimulation. Base-line water flow was unaffected by bladder distension, but hormonally stimulated flow increased systematically as bladders became more distended. Distension had no effect on the frequency of ADH-induced intramembranous particle aggregates. By comparing the relationships between aggregate frequency and hormonally induced water permeability in distended and undistended bladders, we found that distension appeared to enhance ADH-stimulated water flow by decreasing the resistance of the series permeability barrier while the apparent water permeability associated with each single luminal membrane aggregate was unaffected. In that bladder distension causes tissue thinning, the series resistance limiting ADH-stimulated water flow appears to be accounted for by deformable barriers within the bladder tissue itself, probably unstirred layers of water.  相似文献   

11.
In freeze-fracture (FF) preparations of ADH-stimulated toad urinary bladder, characteristic intramembrane particle (IMP) aggregates are seen on the protoplasmic (P) face of the luminal membrane of granular cells while complementary parallel grooves are found on the exoplasmic (E) face. These IMP aggregates specifically correlate with ADH-induced changes in water permeability. Tubular cytoplasmic structures whose membranes contain IMP aggregates which look identical to the IMP aggregates in the luminal membrane have also been described in granular cells from unstimulated and ADH-stimulated bladders. The diameter of these cytoplasmic structures (0.11 +/- 0.004 micrometers) corresponds to that of tubular invaginations of the luminal membrane seen in thin sections of ADH-treated bladders (0.13 +/- 0.005 micrometers). Continuity between the membranes of these cytoplasmic structures (which are not granules) and the luminal membrane has been directly observed in favorable cross-fractures. In FF preparations of the luminal membrane, these apparent fusion events are seen as round, ice-filled invaginations (0.13 +/- 0.01 micrometer Diam), of which about half have the characteristic ADH-associated aggregates near the point of membrane fusion. They are less numerous than, but linearly related to, the number of aggregates counted in the same preparations (n = 78, r = 0.71, P less than 0.01). These observations suggest that the IMP aggregates seen in luminal membrane after ADH stimulation are transferred preformed by fusion of cytoplasmic with luminal membrane.  相似文献   

12.
Summary The elevated osmotic permeability to water induced by antidiuretic hormone (ADH) in the isolated urinary bladder of the toad is rapidly reversed by removal or washout of the ADH. This return to normal water permeability is delayed by the suppression of production of metabolic energy by any of three maneuvers: (i) low temperature (2°C); (ii) inhibition of oxidative phosphorylation (10mm azide or 0.5mm 2,4 dinitrophenol); or (iii) inhibition of glycolysis (10mm iodoacetate or 10mm 2-deoxyglucose). Moreover, exposure to cytochalasin B, 2.1×10–5 m, either before or after initiation of the hormonal effect also delays the return of water permeability to normal following removal of ADH. When considered within constraints imposed by models which predict ADH's action on water permeability to be either via modulation of the fluidity of lipids in the membrane or via the figuration of proteins (pores) in the lipid membrane, these observations on the inhibition of the reversal of ADH stimulation of water flow are more consistent with the protein (pore) theory and place limitations on the mechanisms by which proteins in such pores can return to the resting or impermeable state.  相似文献   

13.
Several experimental conditions such as antidiuretic hormone (ADH) challenge, apical treatment with phorbol myristate acetate (PMA), and mechanical stretching of the tissue are known to increase the insertion of intramembrane particle aggregates and/or granule exocytosis at the apical border of epithelial cells of amphibian urinary bladders. A constant release of 2 peptides of 76 and 14 kDa apparent molecular mass, respectively, was associated with these treatments. The localization of these 2 polypeptides was assessed by immunofluorescence and electron microscopy immunocytochemistry using fluorescent, peroxidase, and colloidal gold probes. The 76 kDa polypeptide appeared to be associated with the cell coat and with the granule content which is released at the apical cell surface. The 14 kDa peptide was also found in the cell coat, and postembedding immunocytochemistry indicates its presence in cytoplasmic subapical vesicles (aggrephores and/or granules). The migration of these 76 and 14 kDa polypeptides in SDS-polyacrylamide gel electrophoresis was modified neither by a treatment at 90 degrees C, nor by the presence or absence of calcium in the medium. Treatment with EGTA did not modify the fluorescence emission of the two peptides and, consequently, they are probably not among the major calcium binding proteins. The addition to the mucosal medium of the stretch extract or of antibodies raised against the 76 and 14 kDa peptides did not modify ADH-induced water permeability. However, a significant decrease of the hydrosmotic response to ADH occurred in subsequent stimulation-washout cycles when the anti-14 kDa peptide antiserum was applied to the mucosal bath. When the bladders were incubated with a stretch extract, we observed a slight alteration of the short-circuit current (Isc), an increase of the basal Na+ transport, and a decrease of the maximal Isc in response to ADH. The 76 kDa protein, released in the apical medium, could play a protective role in the cellular plasma membrane and could participate in the formation of the thick cell coat lining the apical membrane of the granular cells. The 14 kDa protein might be one of the proteins associated with the aggregates, but further studies will be necessary to clarify its exact role in the ADH-induced permeability modifications observed in amphibian urinary bladders.  相似文献   

14.
Incubation of the mucosal surface of the toad urinary bladder with trypsin (1 mg/ml) irreversibly decreased the short-circuit current to 50% of the initial value. This decrease was accompanied by a proportionate decrease in apical Na permeability, estimated from the change in amiloride-sensitive resistance in depolarized preparations. In contrast, the paracellular resistance was unaffected by trypsinization. Amiloride, a specific blocker of the apical Na channels, prevented inactivation by trypsin. Inhibition of Na transport by substitution of mucosal Na, however, had no effect on the response to trypsin. Trypsinization of the apical membrane was also used to study regulation of Na transport by anti-diuretic hormone (ADH) and aldosterone. Prior exposure of the apical surface to trypsin did not reduce the response to ADH, which indicates that the ADH-induced Na channels were inaccessible to trypsin before addition of the hormone. On the other hand, stimulation of short-circuit current by aldosterone or pyruvate (added to substrate-depleted, aldosterone-repleted bladders) was substantially reduced by prior trypsinization of the apical surface. Thus, the increase in apical Na permeability elicited by aldosterone or substrate involves activation of Na channels that are continuously present in the apical membrane in nonconductive but trypsin-sensitive forms.  相似文献   

15.
Membrane water transport is an essential event not only in the osmotic cell volume change but also in the subsequent cell volume regulation. Here we investigated the route of water transport involved in the regulatory volume decrease (RVD) that occurs after osmotic swelling in human epithelial Intestine 407 cells. The diffusion water permeability coefficient (Pd) measured by NMR under isotonic conditions was much smaller than the osmotic water permeability coefficient (Pf) measured under an osmotic gradient. Temperature dependence of Pf showed the Arrhenius activation energy (Ea) of a low value (1.6 kcal/mol). These results indicate an involvement of a facilitated diffusion mechanism in osmotic water transport. A mercurial water channel blocker (HgCl2) diminished the Pf value. A non-mercurial sulfhydryl reagent (MMTS) was also effective. These blockers of water channels suppressed the RVD. RT-PCR and immunocytochemistry demonstrated predominant expression of AQP3 water channel in this cell line. Downregulation of AQP3 expression induced by treatment with antisense oligodeoxynucleotides was found to suppress the RVD response. Thus, it is concluded that AQP3 water channels serve as an essential pathway for volume-regulatory water transport in, human epithelial cells.  相似文献   

16.
The influence of endogenous gram-negative bacteria colonizing the mucosal epithelium of frog Rana temporaria L. urinary bladders (FUB) on arginine-vasotocin AVT-stimulated osmotic water flow in isolated urinary bladders was investigated. 170 animals were examined and only 40% were contaminated with gram-negative bacteria (about 10(3)-10(6) CFU per hemibladder). Several Enterobacteriaceae species were identified (Hafnia alvei, 36.7%, E. coli, 32.3%, Serratia marcescens, 8.8%, Citrobacter freundii, 4.4% etc.). Basal osmotic water flow level was invariable in "clean" and contaminated FUB, whereas bacterial contamination resulted in considerable decrease in AVT-stimulated water flow ("clean": 2.53 +/- 0.13, n = 59, contaminated: 1.21 +/- 0.17 me/min/cm2, n = 38, p < 0.001, within first 15 min of incubation with 5 x 10(-10)M AVT). Gentamycin protection assay revealed predominantly adhesive forms of bacteria. Thus our data indicated that the presence of gram-negative bacteria colonizing the mucosal epithelium of the urinary bladder results in decreased adility of ADH to rise osmotic water permeability which in turn could impair body osmoregulation.  相似文献   

17.
Summary The water diffusional permeability, its activation energy and the lipid composition were studied in urinary bladders from toads adapted to different temperatures. It was observed that the unidirectional water flux greatly depends on the temperature at which the experiments are performed. This dependence is greater in the animals adapted to higher temperatures. Toads adapted to cold show strong reduction in the activation energy for water diffusion permeability (from 11.4±1.9 kcal·mol–1 to 4.4±1.1 kcal·mol–1) and an increase of 30% in the amount of total lipids from bladder epithelial cells. There were no significant changes in the phospholipid/cholesterol ratio, composition of the paraffinic chains or protein concentration between toads adapted to both temperatures. The possibility that water translocates through the mucosal border of the toad bladder by partitioning in the polar zone and diffusioning between the hydrocarbon chains of the membrane lipids and that cold adaptation would induce a stronger packing of lipids in the membrane is discussed.  相似文献   

18.
Summary In the urinary bladder of amphibia, hypertonicity of the serosal bath (SH) evokes an increase in transepithelial water permeability, the characteristics of which resemble the response to antidiuretic hormone (ADH). The ionic dependency, in particular for Ca2+, appears very similar forSH- and ADH-induced water fluxes. In the present experiments La3+ was used as a probe to study the Ca2+-dependency of the hydrosmotic response toSH in isolated urinary bladder of the toadBufo marinus.Addition of La3+ (5mm) on the serosal side of the membrane produced a significant and reversible increase in basal transepithelial water flux. The hydrosmotic response elicited by adding 250mm mannitol to the serosal Ringer's solution was inhibited by 30% in the absence of serosal Ca2+. Similarly, the hydrosmotic response toSH was inhibited by 37%, 30% and 40% when 5mm La3+ was added to the serosal medium 30 min before, concommitantly with, or 60 min after induction ofSH. The inhibition of transepithelial water flux observed in the absence of serosal Ca2+ or in the presence of serosal La3+ was reversible.The results support a critical role for Ca2+ in the modulation of transepithelial water permeability in the urinary bladder of amphibia. Ca2+ presumably exerts its effects at a post-cyclic AMP step.  相似文献   

19.
The method of stopped flow was used to follow the changes in light scattering by the vesicles of plasmalemma and tonoplast isolated from maize (Zea maysL.) roots and treated by osmotic pressure. In both membrane preparations, the rate of the process depended on the osmotic gradient and was described with the simple exponential function. The rate constants derived from these functions were the following: the coefficient of water permeability in the tonoplast (P= 165 ± 7 m/s) exceeded by an order of magnitude the corresponding index for plasmalemma (11 ± 2 m/s). The presence of HgCl2(1.6 nmol/g membrane protein) decreased the tonoplast water permeability by 80%. Microviscosity studies of the hydrocarbon zone in the isolated membranes by using a fluorescent diphenylhexatriene probe demonstrated that the two membranes do not differ in the phase state of their lipid bilayer. The authors conclude that the observed difference in water permeability does not depend on the state of the lipid phase and probably reflects the dissimilar functional activity of plasmalemma and tonoplast aquaporins.  相似文献   

20.
Summary Osmotic water permeability of the apical membrane of toad urinary epithelium is increased greatly by vasopressin (VP) and is associated with exocytic addition of granules and aggrephores at the apical surface. To determine the physiological role of granule exocytosis, we measured the osmotic water permeability and membrane fluidity of isolated granules, surface membranes and microsomes prepared from toad bladder in the presence and absence of VP.P f was measured by stopped-flow light scattering and membrane fluidity was examined by diphenylhexatriene (DPH) fluorescence anisotropy. In response to a 75mm inward sucrose gradient, granule size decreased with a single exponential time constant of 2.3±0.1 sec (sem, seven preparations, 23°C), corresponding to aP f of 5×10–4 cm/sec; the activation energy (E a ) forP f was 17.6±0.8 kcal/mole. Under the same conditions, the volume of surface membrane vesicles decreased biexponentially with time constants of 0.13 and 1.9 sec; the fast component comprised 70% of the signal. Granule, surface membrane and microsome time constants were unaffected by VP. However, in surface membranes, there was a small decrease (6±2%) in the fraction of surface membranes with fast time constant. DPH anisotropies were 0.253 (granules), 0.224 (surface membrane fluidity is remarkably lower than that of surface and microsomal membranes, and (4) rapid water transport occurs in surface membrane vesicles. The unique physical properties of the granule suggests that apical exocytic addition of granule membrane may be responsible for the low water permeability of the unstimulated apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号