首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of filamentous F-actin drives many cellular processes, including phagocytosis and cell spreading. We have recently reported that mouse macrophage 12/15-lipoxygenase (12/15-LO) activity promotes F-actin formation in filopodia during phagocytosis of apoptotic cells. Oxidized low-density lipoprotein (OxLDL) also stimulates robust F-actin formation and spreading of macrophages. However, unlike apoptotic cells, OxLDL did not cause specific translocation of 12/15-LO to the cell membrane, neither in macrophages nor in GFP-15LO-transfected COS-7 cells. Moreover, inhibition of 12/15-LO activity in macrophages by a specific inhibitor or by 12/15-LO gene disruption did not affect OxLDL-induced actin polymerization. Among LDL modifications modeling OxLDL, LDL modified by incubation with 15LO-overexpressing fibroblasts was as active in eliciting F-actin response as was OxLDL. This LDL modification is well known to produce minimally modified LDL (mmLDL), which is bioactive and carries lipid oxidation products similar to those produced by 12/15-LO catalysis. MmLDL activated phosphoinositide 3-kinase (PI3K), and PI3K inhibitors abolished mmLDL-induced macrophage spreading. We hypothesize that OxLDL and mmLDL may contribute oxidized lipids to the macrophage cell membrane and thereby mimic intracellular 12/15-LO activity, which leads to uncontrolled actin polymerization and dramatic cytoskeletal changes in macrophages.  相似文献   

2.
3.
Oxidation of low-density lipoprotein (LDL) is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL) induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs) were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography – tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis.  相似文献   

4.
ER-112022 is a novel acyclic synthetic lipid A analog that contains six symmetrically organized fatty acids on a noncarbohydrate backbone. Chinese hamster ovary (CHO)-K1 fibroblasts and U373 human astrocytoma cells do not respond to lipopolysaccharide (LPS) in the absence of CD14. In contrast, exposure to ER-112022 effectively induced activation of CHO and U373 cells under serum-free conditions. Expression of CD14 was not necessary for cells to respond to ER-112022, although the presence of soluble CD14 enhanced the sensitivity of the response. Several lines of evidence suggested that ER-112022 stimulates cells via the LPS signal transduction pathway. First, the diglucosamine-based LPS antagonists E5564 and E5531 blocked ER-112022-induced stimulation of CHO-K1, U373, and RAW264.7 cells. Second, ER-112022 was unable to activate C3H/HeJ mouse peritoneal macrophages, containing a mutation in Toll-like receptor (TLR) 4, as well as HEK293 cells, an epithelial cell line that does not express TLR4. Third, ER-112022 activated NF-kappaB in HEK293 cells transfected with TLR4/MD-2. Finally, tumor necrosis factor release from primary human monocytes exposed to ER-112022 was blocked by TLR4 antibodies but not by TLR2 antibodies. Our results suggest that ER-112022 and the family of lipid A-like LPS antagonists can functionally associate with TLR4 in the absence of CD14. Synthetic molecules like ER-112022 may prove to be valuable tools to characterize elements in the LPS receptor complex, as well as to activate or inhibit the TLR4 signaling pathway for therapeutic purposes.  相似文献   

5.
MD-2 binds to bacterial lipopolysaccharide   总被引:16,自引:0,他引:16  
The exact roles and abilities of the individual components of the lipopolysaccharide (LPS) receptor complex of proteins remain unclear. MD-2 is a molecule found in association with toll-like receptor 4. We produced recombinant human MD-2 to explore its LPS binding ability and role in the LPS receptor complex. MD-2 binds to highly purified rough LPS derived from Salmonella minnesota and Escherichia coli in five different assays; one assay yielded an apparent KD of 65 nm. MD-2 binding to LPS did not require LPS-binding proteins LBP and CD14; in fact LBP competed with MD-2 for LPS. MD-2 enhanced the biological activity of LPS in toll-like receptor 4-transfected Chinese hamster ovary cells but inhibited LPS activation of U373 astrocytoma cells and of monocytes in human whole blood. These data indicate that MD-2 is a genuine LPS-binding protein and strongly suggest that MD-2 could play a role in regulation of cellular activation by LPS depending on its local availability.  相似文献   

6.
Lipopolysaccharide (LPS) induces inflammatory activation through TLR4 (toll-like receptor-4)/MD-2 (myeloid differentiation-2)/CD14 (cluster of differentiation-14) complex. Although optimal LPS signaling is required to activate our innate immune systems against gram-negative bacterium, excessive amount of LPS signaling develops a detrimental inflammatory response in gram-negative bacterial infections. Downregulation of surface TLR4 expression is one of the critical mechanisms that can restrict LPS signaling. Here, we found that membrane-anchored CD14 is required for LPS-induced downregulation of TLR4 and MD-2 in CHO cells. Moreover, pretreatment of the cells with sterol-binding agent filipin reduced LPS-induced TLR4 downregulation, suggesting the involvement of caveolae-mediated endocytosis pathway. Involvement of caveolae in LPS-induced TLR4 endocytosis was further confirmed by immunoprecipitation. Thus, our data indicate that caveolae-dependent endocytosis pathway is involved in LPS-induced TLR4 downregulation and that this is dependent on membrane-anchored CD14 expression.  相似文献   

7.
TLRs function as pattern recognition receptors in mammals and play an essential role in the recognition of microbial components. We found that the injection of glycoinositolphospholipids (GIPLs) from Trypanosoma cruzi into the peritoneal cavity of mice induced neutrophil recruitment in a TLR4-dependent manner: the injection of GIPL in the TLR4-deficient strain of mice (C57BL/10ScCr) caused no inflammatory response. In contrast, in TLR2 knockout mice, neutrophil chemoattraction did not differ significantly from that seen in wild-type controls. GIPL-induced neutrophil attraction and MIP-2 production were also severely affected in TLR4-mutant C3H/HeJ mice. The role of TLR4 was confirmed in vitro by testing genetically engineered mutants derived from TLR2-deficient Chinese hamster ovary (CHO)-K1 fibroblasts that were transfected with CD14 (CHO/CD14). Wild-type CHO/CD14 cells express the hamster TLR4 molecule and the mutant line, in addition, expresses a nonfunctional form of MD-2. In comparison to wild-type cells, mutant CHO/CD14 cells failed to respond to GIPLs, indicating a necessity for a functional TLR4/MD-2 complex in GIPL-induced NF-kappaB activation. Finally, we found that TLR4-mutant mice were hypersusceptible to T. cruzi infection, as evidenced by a higher parasitemia and earlier mortality. These results demonstrate that natural resistance to T. cruzi is TLR4 dependent, most likely due to TLR4 recognition of their GIPLs.  相似文献   

8.
A significant amount of evidence has been accumulated to show that Toll-like receptors (TLRs) function as sensors for microbial invasion. However, little is known about how signalling triggered by TLRs leads to the phagocytosis of pathogens. This study was designed to determine whether stimulation of TLR2 mainly with the lipopeptide FSL-1 plays a role in the phagocytosis of pathogens by macrophages. FSL-1 enhanced the phagocytosis of Escherichia coli to a markedly greater extent than it did that of Staphylococcus aureus, but did not enhance the phagocytosis of latex beads. FSL-1 stimulation resulted in enhanced phagocytosis of bacteria by macrophages from TLR2(+/+) mice but not by those from TLR2(-/-) mice. Chinese hamster ovary cells stably expressing TLR2 failed to phagocytose these bacteria, but the cells expressing CD14 did. FSL-1 induced upregulation of the expression of phagocytic receptors, including MSR1, CD36, DC-SIGN and Dectin-1 in THP-1 cells. Human embryonic kidney 293 cells transfected with DC-SIGN and MSR1 phagocytosed these bacteria. These results suggest that the FSL-1-induced enhancement of phagocytosis of bacteria by macrophages may be explained partly by the upregulation of scavenger receptors and the C-type lectins through TLR2-mediated signalling pathways, and that TLR2 by itself does not function as a phagocytic receptor.  相似文献   

9.
Down-regulation of cell surface expression of Toll-like receptor (TLR) 4 following LPS stimulation has been suggested to underlie endotoxin tolerance. In this study, we examined whether overexpression of TLR2 or TLR4 would affect the ability of cells to become tolerant to LPS or the mycobacterial components, arabinose-capped lipoarabinomannan (LAM) and soluble tuberculosis factor (STF). To this end, Chinese hamster ovary/CD14 cells stably transfected with a NF-kappaB-dependent reporter construct, endothelial leukocyte adhesion molecule CD25 (the 3E10 clone), were engineered to overexpress either human TLR2 or TLR4. Transfected TLRs exhibited proper signaling functions, as evidenced by increased LPS responsiveness of 3E10/TLR4 cells and acquisition of sensitivity to TLR2-specific ligands upon transfection of TLR2 into TLR2-negative 3E10 cells. Pretreatment of cells with LPS, LAM, or STF did not modulate TLR2 or TLR4 cell surface expression. Following LPS exposure, 3E10, 3E10/TLR2, and 3E10/TLR4 cells exhibited comparable decreases in LPS-mediated NF-kappaB activation and mitogen-activated protein (MAP) kinase phosphorylation. Likewise, LPS pretreatment profoundly inhibited LPS-induced NF-kappaB translocation in Chinese hamster ovary cells that concomitantly overexpressed human TLR4 and myeloid differentiation protein-2 (MD-2), but failed to modulate TLR4 or MD-2 cell surface expression. Pretreatment of 3E10/TLR2 cells with LAM or STF decreased their NF-kappaB responses induced by subsequent stimulation with these substances or LPS. Conversely, prior exposure of 3E10/TLR2 cells to LPS led to hyporesponsiveness to LPS, LAM, and STF, indicating that LPS and mycobacterial products induce cross-tolerance. Thus, tolerance to LPS and mycobacterial components cannot be attributed solely to a decrease in TLR/MD-2 expression levels, suggesting inhibition of expression or function of other signaling intermediates.  相似文献   

10.
Three cell-surface proteins have been recognized as components of the mammalian signaling receptor for bacterial lipopolysaccharide (LPS): CD14, Toll-like receptor-4 (TLR4), and MD-2. Biochemical and visual studies shown here demonstrate that the role of CD14 in signal transduction is to enhance LPS binding to MD-2, although its expression is not essential for cellular activation. These studies clarify how MD-2 functions: we found that MD-2 enables TLR4 binding to LPS and allows the formation of stable receptor complexes. MD-2 must be bound to TLR4 on the cell surface before binding can occur. Consequently, TLR4 clusters into receptosomes (many of which are massive) that recruit intracellular toll/IL-1/resistance domain-containing adapter proteins within minutes, thus initiating signal transduction. TLR4 activation correlates with the ability of MD-2 to bind LPS, as MD-2 mutants that still bind TLR4, but are impaired in the ability to bind LPS, conferred a greatly blunted LPS response. These findings help clarify the earliest events of TLR4 triggering by LPS and identify MD-2 as an attractive target for pharmacological intervention in endotoxin-mediated diseases.  相似文献   

11.
Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS) and rough (R-LPS) chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive immunity.  相似文献   

12.
A cell surface receptor complex consisting of CD14, Toll-like receptor (TLR4), and MD-2 recognizes lipid A, the active moiety of lipopolysaccharide (LPS). Escherichia coli-type lipid A, a typical lipid A molecule, potently activates both human and mouse macrophage cells, whereas the lipid A precursor, lipid IVa, activates mouse macrophages but is inactive and acts as an LPS antagonist in human macrophages. This animal species-specific activity of lipid IVa involves the species differences in MD-2 structure. We explored the structural region of MD-2 that determines the agonistic and antagonistic activities of lipid IVa to induce nuclear factor-kappaB activation. By expressing human/mouse chimeric MD-2 together with mouse CD14 and TLR4 in human embryonic kidney 293 cells, we found that amino acid regions 57-79 and 108-135 of MD-2 determine the species-specific activity of lipid IVa. We also showed that the replacement of Thr(57), Val(61), and Glu(122) of mouse MD-2 with corresponding human MD-2 sequence or alanines impaired the agonistic activity of lipid IVa, and antagonistic activity became evident. These mutations did not affect the activation of nuclear factor-kappaB, TLR4 oligomerization, and inducible phosphorylation of IkappaBalpha in response to E. coli-type lipid A. These results indicate that amino acid residues 57, 61, and 122 of mouse MD-2 are critical to determine the agonist-antagonist activity of lipid IVa and suggest that these amino acid residues may be involved in the discrimination of lipid A structure.  相似文献   

13.
We analysed the lipopolysaccharide (LPS)-recognition mechanism in cells expressing TLR4 and CD14 but lacking MD-2. When TLR4 and CD14 were transiently expressed in HEK293 cells, cell-surface expression of TLR4 was observed, although the expression level was lower than that in cells coexpressing MD-2. We found that membrane CD14-TLR4 complexes were formed in these cells in response to LPS stimulation even in the absence of MD-2 expression, although NF-kappaB-dependent reporter activity was not induced. A strong activation of NF-kappaB was observed when these cells were stimulated with LPS followed by soluble MD-2 in this order, even when excess LPS was removed after formation of the CD14-TLR4 complex by washing cells prior to sMD-2 addition. From these results, we propose an additional LPS-recognition mechanism. In cells expressing TLR4 and CD14 but lacking MD-2, LPS is first transferred to membrane CD14 with the aid of LPS binding protein, which leads to the formation of the TLR4-CD14 complex. Then, the binding of soluble MD-2 to this complex triggers the transmembrane signal transduction. Cells expressing TLR4 and CD14 but lacking MD-2, such as airway epithelial cells, may be activated in response to LPS by this mechanism.  相似文献   

14.
The complex consisting of Toll-like receptor 4 (TLR4) and associated MD-2 signals the presence of lipopolysaccharide (LPS) when it is expressed in cell lines. We here show that normal human mononuclear cells express TLR4 and signal LPS via TLR4. CD14 is a molecule that binds to LPS and facilitates its signaling. Little is known, however, about the relationship of CD14 with TLR4-MD-2. We show that CD14 helps TLR4-MD-2 to sense and signal the presence of LPS. CD14 has also been implicated in recognition of apoptotic cells, which leads to phagocytosis without activation. Membrane phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PtdIns) are thought to serve as the ligands for CD14 in apoptotic cells. We find that PtdIns acts as an LPS antagonist in the signaling via TLR4-MD-2. TLR4-MD-2 seems to discriminate LPS from phospholipids. The signaling via TLR4-MD-2 is thus regulated by CD14 and phospholipid such as PtdIns.  相似文献   

15.
Regions of mouse CD14 required for Toll-like receptor 2 (TLR2)- and TLR4-mediated activation of NF-kappaB were studied in transiently transfected 293 cells. Wild-type CD14 enhanced lipopolysaccharide (LPS)-induced NF-kappaB-dependent reporter activity in cells expressing TLR4/MD-2, and deletion of amino acid regions 35-44, 144-153, 235-243, and 270-275 impaired the TLR4-mediated activation. Unlike human CD14, mouse CD14 truncated at amino acid 151 lost the activity. Deletion of amino acids 35-44 or 235-243 also abrogated TLR2-mediated activation of NF-kappaB, whereas mutants lacking 144-153 and 270-275 retained the activity. Deletion and alanine substitution experiments revealed that amino acids 151-153 and 273-275 were required for the TLR4-mediated activation. Both deletion mutants lacking amino acids 35-44 and 235-243 and alanine substitution mutants in regions 151-153 and 273-275 were expressed on the cell surface and retained the ability to associate with TLR4. A cross-linking study with photoreactive LPS showed that the labeling intensities to CD14 mutants/TLR4/MD-2 were paralleled by the ability of CD14 mutants to increase TLR4-mediated activation. These results indicate that different regions of mouse CD14 are required for TLR4- and TLR2-mediated activation of NF-kappaB and suggest that amino acids 35-44, 151-153, 235-243, and 273-275 of mouse CD14 play an important role in LPS binding and its transfer to TLR4/MD-2.  相似文献   

16.
MD-2 is essential for lipopolysaccharide (LPS) recognition of Toll-like receptor 4 (TLR4) but not for cell surface expression. The TLR4/MD-2 complex is formed intracellularly through co-expression. Extracellular complex formation remains a matter for debate because of the aggregative nature of secreted MD-2 in the absence of TLR4 co-expression. We demonstrated extracellular complex formation using three independent monoclonal antibodies (mAbs), all of which are specific for complexed TLR4 but unreactive with free TLR4 and MD-2. These mAbs bound to TLR4-expressing Ba/F3 cells only when co-cultured with MD-2-secreting Chinese hamster ovary cells or incubated with conditioned medium from these cells. All three mAbs bound the extracellularly formed complex indistinguishably from the intracellularly formed complex in titration studies. In addition, we demonstrated that two mAbs lost their affinity for TLR4/MD-2 on LPS stimulation, suggesting that these mAbs bound to conformation-sensitive epitopes. This was also found when the extracellularly formed complex was stimulated with LPS. Additionally, we showed that cell surface TLR4 and extrinsically secreted MD-2 are capable of forming the functional complex extracellularly, indicating an additional or alternative pathway for the complex formation.  相似文献   

17.
The lipopolysaccharide (LPS) receptor is a multi-protein complex that consists of at least three proteins, CD14, TLR4, and MD-2. Because each of these proteins is glycosylated, we have examined the functional role of N-linked carbohydrates of both MD-2 and TLR4. We demonstrate that MD-2 contains 2 N-glycosylated sites at positions Asn(26) and Asn(114), whereas the amino-terminal ectodomain of human TLR4 contains 9 N-linked glycosylation sites. Site-directed mutagenesis studies showed that cell surface expression of MD-2 did not depend on the presence of either N-linked site, whereas in contrast, TLR4 mutants carrying substitutions in Asn(526) or Asn(575) failed to be transported to the cell surface. Using a UV-activated derivative of Re595 LPS (ASD-Re595 LPS) in cross-linking assays, we demonstrated a critical role of MD-2 and TLR4 carbohydrates in LPS cross-linking to the LPS receptor. The ability of the various glycosylation mutants to support cell activation was also evaluated in transiently transfected HeLa cells. The double mutant of MD-2 failed to support LPS-induced activation of an interleukin-8 (IL-8) promoter-driven luciferase reporter to induce IL-8 secretion or to activate amino-terminal c-Jun kinase (JNK). Similar results were observed with TLR4 mutants lacking three or more N-linked glycosylation sites. Surprisingly, the reduction in activation resulting from expression of the Asn mutants of MD-2 and TLR4 can be partially reversed by co-expression with CD14. This suggests that the functional integrity of the LPS receptor depends both on the surface expression of at least three proteins, CD14, MD-2, and TLR4, and that N-linked sites of both MD-2 and TLR4 are essential in maintaining the functional integrity of this receptor.  相似文献   

18.
Toll-like receptors (TLR) 2 and 4 are cell surface receptors that in association with CD14 enable phagocytic inflammatory responses to a variety of microbial products. Activation via these receptors triggers signaling cascades, resulting in nuclear translocation of NF-kappa B and a proinflammatory response including TNF-alpha production. We investigated whether TLRs participate in the host response to Cryptococcus neoformans glucuronoxylomannan (GXM), the major capsular polysaccharide of this fungus. Chinese hamster ovary fibroblasts transfected with human TLR2, TLR4, and/or CD14 bound fluorescently labeled GXM. The transfected Chinese hamster ovary cells were challenged with GXM, and activation of an NF-kappa B-dependent reporter construct was evaluated. Activation was observed in cells transfected with both CD14 and TLR4. GXM also stimulated nuclear NF-kappa B translocation in PBMC and RAW 264.7 cells. However, stimulation of these cells with GXM resulted in neither TNF-alpha secretion nor activation of the extracellular signal-regulated kinase 1/2, p38, and stress-activated protein kinase/c-Jun N-terminal kinase mitogen-activated protein kinase pathways. These findings suggest that TLRs, in conjunction with CD14, function as pattern recognition receptors for GXM. Furthermore, whereas GXM stimulates cells to translocate NF-kappa B to the nucleus, it does not induce activation of mitogen-activated protein kinase pathways or release of TNF-alpha. Taken together, these observations suggest a novel scenario whereby GXM stimulates cells via CD14 and TLR4, resulting in an incomplete activation of pathways necessary for TNF-alpha production.  相似文献   

19.
Lipoteichoic acid (LTA) derived from Streptococcus pneumoniae, purified employing a chloroform/methanol protocol, and from Staphylococcus aureus, prepared by the recently described butanol extraction procedure, was investigated regarding its interaction with lipopolysaccharide (LPS)-binding protein (LBP), CD14, Toll-like receptors (TLRs)-2 and -4, and MD-2. LTA from both organisms induced cytokine synthesis in human mononuclear phagocytes. Activation was LBP- and CD14-dependent, and formation of complexes of LTA with LBP and soluble CD14 as well as catalytic transfer of LTA to CD14 by LBP was verified by PhastGel(TM) native gel electrophoresis. Human embryonic kidney (HEK) 293/CD14 cells and Chinese hamster ovary (CHO) cells were responsive to LTA only after transfection with TLR-2. Additional transfection with MD-2 did not affect stimulation of these cells by LTA. Our data suggest that innate immune recognition of LTA via LBP, CD14, and TLR-2 represents an important mechanism in the pathogenesis of systemic complications in the course of infectious diseases brought about by the clinically most important Gram-positive pathogens. However, the involvement of TLR-4 and MD-2 in this process was ruled out.  相似文献   

20.
Phagocyte ingestion of monosodium urate (MSU) crystals can induce proinflammatory responses and trigger acute gouty inflammation. Alternatively, the uptake of MSU crystals by mature macrophages can be noninflammatory and promote resolution of gouty inflammation. Macrophage activation by extracellular MSU crystals involves apparent recognition and ingestion mediated by TLR2 and TLR4, with subsequent intracellular recognition linked to caspase-1 activation and IL-1beta processing driven by the NACHT-LRR-PYD-containing protein-3 inflammasome. In this study, we examined the potential role in gouty inflammation of CD14, a phagocyte-expressed pattern recognition receptor that functionally interacts with both TLR2 and TLR4. MSU crystals, but not latex beads, directly bound recombinant soluble (s) CD14 in vitro. CD14(-/-) bone marrow-derived macrophages (BMDMs) demonstrated unimpaired phagocytosis of MSU crystals but reduced p38 phosphorylation and approximately 90% less IL-1beta and CXCL1 release. Attenuated MSU crystal-induced IL-1beta release in CD14(-/-) BMDMs was mediated by decreased pro-IL-1beta protein expression and additionally by decreased caspase-1 activation and IL-1beta processing consistent with diminished NACHT-LRR-PYD-containing protein-3 inflammasome activation. Coating of MSU crystals with sCD14, but not sTLR2 or sTLR4, restored IL-1beta and CXCL1 production in CD14(-/-) BMDMs in vitro. Gain of function of CD14 directly enhanced TLR4-mediated signaling in response to MSU crystals in transfected Chinese hamster ovary cells in vitro. Last, MSU crystal-induced leukocyte influx at 6 h was reduced by approximately 75%, and local induction of IL-1beta decreased by >80% in CD14(-/-) mouse s.c. air pouches in vivo. We conclude that engagement of CD14 is a central determinant of the inflammatory potential of MSU crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号