共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Gibbons WJ Yan Q Li R Li X Guan MX 《Biochemical and biophysical research communications》2004,317(3):774-778
We report here the identification and characterization of the mouse mitochondrial seryl-tRNA synthetase (mtSerRS). The genomic organization of mouse mtSerRS has been elucidated. The mouse mtSerRS gene containing 16 exons encodes a 519 residue protein with a strong homology to the mitochondria-like seryl-tRNA synthetase of bacteria, yeast, and other homologs. The mouse mtSerRS is ubiquitously expressed in various tissues, but more abundantly in tissues with high metabolic rates including heart and liver. Surprisingly, this gene, unlike other nuclear genes encoding mitochondrial proteins, exhibited a low expression in skeletal muscle and brain. Furthermore, immunofluorescence analysis of NIH3T3 cells expressing the mtSerRS-GFP fusion protein demonstrated that the mouse mtSerRS localizes in mitochondrion. These observations suggest that the mouse mtSerRS is an evolutionarily conserved protein involved in aminoacylation. Thus, it may play a role in the fidelity in mitochondrial translation and pathogenesis of deafness-associated mutations in the mitochondrial tRNA(Ser(UCN)). 相似文献
10.
11.
12.
13.
14.
15.
16.
Lima JC Arenhart RA Margis-Pinheiro M Margis R 《Genetics and molecular research : GMR》2011,10(4):2817-2832
MicroRNAs are small 21-nucleotide RNA molecules with regulatory roles in development and in response to stress. Expression of some plant miRNAs has been specifically associated with responses to abiotic stresses caused by cold, light, iron, and copper ions. In acid soils, aluminum solubility increases, thereby causing severe damage to plants. Although physiological aspects of aluminum toxicity in plants have been well characterized, the molecular mediators are not fully elucidated. There have been no reports about miRNA responses to aluminum stress. Modulation of miRNA expression may constitute a key element to explain the mechanisms implicated in aluminum toxicity and tolerance. We examined the expression of at least one miRNA member from each miRNA family in rice roots of Oryza sativa spp indica cv. Embrapa Taim and Oryza sativa spp japonica cv. Nipponbare under high concentrations of aluminum. Forty-six miRNA families were effectively detected by quantitative PCR. Among these, 13 were down-regulated and six were up-regulated in roots of the Nipponbare cultivar after 8 h of aluminum treatment. In roots of the Embrapa Taim cultivar, five miRNAs were down-regulated and three were up-regulated. Analyses of their putative targets suggest that these rice miRNAs are involved in the regulation of various metabolic pathways in response to high concentrations of aluminum. 相似文献
17.
18.
19.