首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ratio between two substrates is an important parameter in microbial co-fermentation, such as 1,3-propanediol production from glycerol by Klebsiella pneumoniae using glucose as the cosubstrate. In this study, the glycerol–glucose cometabolism by K. pneumoniae is stoichiometrically analyzed according to energy (ATP), reducing equivalent (NADH2) and product balances. The theoretical analysis reveals that the yield of 1,3-propanediol to glycerol under microaerobic conditions depends not only on the ratio of glucose to glycerol initially added, but also on the molar fraction of reducing equivalent oxidized completely by molecular oxygen in tricarboxylic acid (TCA) cycle (δ) and the molar fraction of TCA cycle in acetyl-CoA metabolism (γ). The maximum ratio of 0.32 mol glucose per mol glycerol is needed to convert glycerol completely to 1,3-propanediol under anaerobic conditions if glycerol neither enters oxidation pathways nor forms biomass. The ratio can be reduced under microaerobic conditions. The experimental results of batch cultures demonstrate that the biomass concentration and yield of 1,3-propanediol on glycerol could be enhanced by using glucose as a co-substrate. The theoretical analysis reveals the relationship between yield of 1,3-propanediol to glycerol, ratio of glucose to glycerol and respiratory quotient (RQ). These results are helpful for the experimental design and control.  相似文献   

2.
A range of recombinant strains of Escherichia coli were developed to produce 1,3-propanediol (1,3-PDO), an important C3 diol, from glucose. Two modules, the glycerol-producing pathway converting dihydroxyacetone phosphate to glycerol and the 1,3-PDO-producing pathway converting glycerol to 1,3-PDO, were introduced into E. coli. In addition, to avoid oxidative assimilation of the produced glycerol, glycerol oxidative pathway was deleted. Furthermore, to enhance the carbon flow to the Embden- Meyerhof-Parnas pathway, the Entner-Doudoroff pathway was disrupted by deleting 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase. Finally, the acetate production pathway was removed to minimize the production of acetate, a major and toxic by-product. Flask experiments were carried out to examine the performance of the developed recombinant E. coli. The best strain could produce 1,3-PDO with a yield of 0.47 mol/mol glucose. Along with 1,3-PDO, glycerol was produced with a yield of 0.33 mol/mol glucose.  相似文献   

3.
Parameters Affecting Solvent Production by Clostridium pasteurianum   总被引:4,自引:1,他引:3       下载免费PDF全文
The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/100 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.  相似文献   

4.
Experiments were carried out to examine the capacity of two strains of Candida lipolytica, producing citric and isocitric acids in the alkane and glucose containing media, to grow on different two- and three-carbon compounds. The strains did not grow on oxalate, glyoxalate, glycolate, malonate or propionate. When cultivated in the media containing acetate, ethanol, glycerol, glucose or hexadecane, supersynthesis of the acids started after complete consumption of the nitrogen source and resultant delay of the culture growth. Either strain discharged the two acids in a proportion that depended on the strain nature and the type of the carbon source. The mutant strain produced only citrate while the wild-type synthesized both citrate and isocitrate, the ratio of which was related to the nature of the carbon source utilized.  相似文献   

5.
1,3-Propanediol (1,3-PDO) is an important platform chemical which has a wide application in food, cosmetics, pharmaceutical and textile industries. Its biological production using recombinant Escherichia coli with glucose as carbon source has been commercialized by DuPont, but E. coli cannot synthesize coenzyme B12 which is an essential and expensive cofactor of glycerol dehydratase, a core enzyme in 1,3-PDO biosynthesis. This study aims to develop a more economical microbial cell factory using Klebsiella pneumoniae J2B which can naturally synthesize coenzyme B12. To this end, the heterologous pathway for the production of glycerol from dihydroxyacetone-3-phosphate (DHAP), a glycolytic intermediate, was introduced to J2B and, afterwards, the strain was extensively modified for carbon and energy metabolisms including: (i) removal of carbon catabolite repression, (ii) blockage of glycerol export across the cell membrane, (iii) improvement of NADH regeneration/availability, (iv) modification of TCA cycle and electron transport chain, (v) overexpression of 1,3-PDO module enzyme, and (vi) overexpression of glucose transporter. A total of 33 genes were modified and/or overexpressed, and one resulting strain could produce 814 mM (62 g/L) of 1,3-PDO with the yield of 1.27 mol/mol glucose in fed-batch bioreactor culture with a limited supplementation of coenzyme B12 at 4 μM, which is ~10 fold less than that employed by DuPont. This study highlights the importance of balanced use of glucose in the production of carbon backbone of the target chemical (1,3-PDO) and regeneration of reducing power (NADH). This study also suggests that K. pneumoniae J2B is a promising host for the production of 1,3-PDO from glucose.  相似文献   

6.
Clostridium butyricum mutants were isolated from the parent strain DSM 5431 after mutagenesis with N-methyl-N(prm1)-nitro-N-nitrosoguanidine and two selection procedures: osmotic pressure and the proton suicide method. Isolated mutants were more resistant to glycerol and to 1,3-propanediol (1,3-PD) than was the wild type, and they produced more biomass. In batch culture on 62 g of glycerol per liter, the wild type produced more acetic acid than butyrate, with an acetate/butyrate ratio of 5.0, whereas the mutants produced almost the same quantities of both acids or more butyrate than acetate with acetate/butyrate ratios from 0.6 to 1.1. The total acid formation was higher in the wild-type strain. Results of analysis of key metabolic enzymatic activities were in accordance with the pattern of fermentation product formation: either the butyrate kinase activity increased or the acetate kinase activity decreased in cell extracts of the mutants. A decreased level of the hydrogenase and NADH-ferredoxin activities concomitant with an increase in ferredoxin-NAD(sup+) reductase activities supports the conclusion that the maximum percentage of NADH available and used for the formation of 1,3-PD was higher for the mutants (97 to 100%) than for the wild type (70%). In fed-batch culture, at the end of the fermentation (72 h for the wild-type strain and 80 to 85 h for the mutants), 44% more glycerol was consumed and 50% more 1,3-PD was produced by the mutants than by the wild-type strain.  相似文献   

7.
AIMS: Clostridium butyricum E5 wild-type and mutant E5-MD were cultivated in chemostat culture on glycerol in order to compare the properties of two key enzymes of glycerol catabolism, i.e. propanediol and glycerol dehydrogenase. METHODS AND RESULTS: These two enzymes, which belong to the dha regulon, were separated by gel filtration. Both dehydrogenase activities displayed similar properties, such as pH optimum values, specificity towards physiological substrates and dependence on Mn2+. Both strains accumulate glycerol at high levels. CONCLUSION: The mutant D strain contained a propanediol dehydrogenase activity which had a low affinity for its physiological substrate, leading to the conclusion that this strain would seem more resistant to the toxic effect of 3-hydroxypropionaldehyde than the wild-type. SIGNIFICANCE AND IMPACT OF THE STUDY: These properties make Cl. butyricum mutant D strain the best candidate so far to be used as a biotechnological agent for the bioconversion of glycerol to 1,3-propanediol.  相似文献   

8.
An (R)-1-phenyl-1,3-propanediol-producing enzyme was purified from Trichosporon fermentans AJ-5152. It was NADPH-dependent and converted 3-hydroxy-1-phenylpropane-1-one (HPPO) to (R)-1-phenyl-1,3-propanediol [(R)-PPD] with anti-Prelog’s specificity. It showed maximum activity at pH 7.0 and 40 °C. Its K m and V max values toward HPPO were 20.1 mM and 3.4 μmol min?1 mg protein?1 respectively. The relative molecular weight of the enzyme was estimated to be 68,000 on gel filtration and 32,000 on SDS-polyacrylamide gel electrophoresis. An (R)-PPD-producing reaction using the (R)-PPD-producing enzyme and an NADPH recycling system was carried out by successive feeding of HPPO. A total (R)-PPD yield of 8.9 g/l was produced in 16 h. The molar yield was 76%, and the optical purity of the (R)-PPD produced was over 99% e.e.  相似文献   

9.
Stoichiometric analysis is applied to continuous glycerol fermentation by Clostridium butyricum to calculate theoretical maximum yields and to predict preferred pathways under different conditions. The upper limits of product concentration and productivity as a function of dilution rate in continuous culture is also predicted from product inhibition kinetic. The theoretical maximum propanediol yield (0.72 mol/mol glycerol) which is calculated for a culture without hydrogen and butyric acid formation agrees well with the experimental maximum value (around 0.71 mol/mol). Comparisons of experimental results (product concentration and productivity) with theoretical calculations and those of the glycerol fermentation by Klebsiella pneumoniae reveal that the production of 1,3-propanediol by C. butyricum is far below the optimum performance available with the present strain. One of the reasons is the relatively high formation of butyric acid under the culture conditions so far applied. The distribution of reducing equivalents to propanediol and hydrogen is also suboptimal. The utilization of the reducing power from pyruvate oxidation for propanediol production is about 60–70% of the theoretical maximum under the present experimental conditions.  相似文献   

10.
Energetic and intermediary metabolism was studied in a Pet- mutant of Saccharomyces cerevisiae with a calcium-sensitive phenotype that shows an inability to grow when cultured in a medium containing non-fermentable substrates. The perchloric acid extracts were prepared from suspensions of cls11 mutant and wild-type cells incubated with [1,3-13C]glycerol or [2-13]acetate, and analyzed by 31P, 13C and 1H NMR. 31P- and 1H-NMR spectra showed significant differences between cls11 and wild-type cells at the level of amino acids, the storage carbohydrate trehalose (higher in mutant cells), and sugar phosphates (higher in wild-type cells). 13C-NMR spectra revealed major differences in the steady-state labelling of glutamate carbons. For incubations with [1,3-13C]glycerol, we estimated from the relative 13C enrichment of glutamate carbons that acetyl-CoA C2 is 43% C13 labelled in wild-type and 10% 13C labelled in mutant cells, respectively. For incubations with [2-13C]acetate, we calculated that the ratio of the relative flux through the glyoxylate shunt versus oxidative reactions is 58% in wild-type cells and 44% in the cls11 mutant cells. Again, a dilution of the relative enrichment of C2 of acetyl-CoA was observed in the mutant cells (89%) compared to the wild-type cells (97%). These results are discussed in terms of pleiotropic defects in non-fermentable carbon metabolism in mutant cells.  相似文献   

11.
The microbial production of 1,3-propanediol (1,3-PD) from glucose was studied in a two-stage fermentation process on a laboratory scale. In the first stage, glucose was converted to glycerol either by the osmotolerant yeast Pichia farinosa or by a recombinant Escherichia coli strain. In the second stage, glycerol in the broth from the first stage was converted to 1,3-PD by Klebsiella pneumoniae. The culture broth from P. farinosa was shown to contain toxic metabolites that strongly impair the growth of K. pneumoniae and the formation of 1,3-PD. Recombinant E. coli is more suitable than P. farinosa for producing glycerol in the first stage. The fermentation pattern from glycerol can be significantly altered by the presence of acetate, leading to a significant reduction of PD yield in the second stage. However, in the recombinant E. coli culture acetate formation can be prevented by fed-batch cultivation under limiting glucose supply, resulting in an effective production of 1,3-PD in the second stage with a productivity of 2.0 g l(-1) h(-1) and a high yield (0.53 g/g) close to that of glycerol fermentation in a synthetic medium. The overall 1,3-PD yield from glucose in the two stage-process with E. coli and K. pneumoniae reached 0.17 g/g.  相似文献   

12.
Zhang Y  Li Y  Du C  Liu M  Cao Z 《Metabolic engineering》2006,8(6):578-586
Production of 1,3-propanediol (1,3-PD) from glycerol by Klebsiella pneumoniae is restrained by ethanol formation. The first step in the formation of ethanol from acetyl-CoA is catalyzed by aldehyde dehydrogenase (ALDH), an enzyme that competes with 1,3-PD oxidoreductase for the cofactor NADH. This study aimed to improve the production of 1,3-PD by engineering the ethanol formation pathway. An inactivation mutation of the aldA gene encoding ALDH in K. pneumoniae YMU2 was generated by insertion of a tetracycline resistance marker. Inactivation of ALDH resulted in a nearly abolished ethanol formation but a significantly improved 1,3-PD production. Metabolic flux analysis revealed that a pronounced redistribution of intracellular metabolic flux occurred. The final titer, the productivity of 1,3-PD and the yield of 1,3-PD relative to glycerol of the mutant strain reached 927.6 mmol L(-1), 14.05 mmol L(-1)h(-1) and 0.699 mol mol(-1), respectively, which were much higher than those of the parent strain. In addition, the specific 1,3-PD-producing capability (1,3-PD produced per gram of cells) of the mutant strain was 2-fold that of the parent strain due to a lower growth yield of the mutant. By increasing NADH availability, this study demonstrates an important metabolic engineering approach to improve the efficiency of oxidoreduction-coupled bioprocesses.  相似文献   

13.
The production of extracellular 1,3-, 1,6-beta-glucanases and chitinase was studied during submerged cultivation of a Trichoderma viride strain 3/78 on various carbon sources: glycerol, glucose, lactose, sucrose, laminaran, starch, pustulan, chitin, and Agaricus bisporus fruit bodies. The synthesis of these enzymes and cellulase was studied also under the conditions of depression at low concentrations (10(-2) and 10(-3)M) of the first five aforementioned carbon sources as well as cellobiose, gentiobiose, N-acetyl-beta-D-glucosamine and 0.1% chitooligosaccharides and A. bisporus cell walls. The experiments were conducted with the washed mycelium of this strain grown for 2 days in a medium with glycerol as a carbon source. The results indicated that 1,3- and 1,6-beta-glucanases of the strain were of the constitutive nature and were repressed by such carbon sources as glycerol and glucose. Chitinase and cellulase were shown to be inducible enzymes. Chitinase was induced by N-acetyl-beta-D-glucosamine, chitooligosaccharides and A. bisporus cell walls as well as by lactose when the fungus was grown on this carbon source. Cellulase biosynthesis was induced by lactose, cellobiose and gentiobiose.  相似文献   

14.
Acetohydroxy acid synthetase, which is sensitive to catabolite repression in wild-type Escherichia coli B, was relatively resistant to this control in a streptomycin-dependent mutant. The streptomycin-dependent mutant was found to be inducible for beta-galactosidase in the presence of glucose, although repression of beta-galactosidase by glucose occurred under experimental conditions where growth of the streptomycin-dependent mutant was limited. Additional glucose-sensitive enzymes of wild-type E. coli B (citrate synthase, fumarase, aconitase and isocitrate dehydrogenase) were found to be insensitive to the carbon source in streptomycin-dependent mutants: these enzymes were formed by streptomycin-dependent E. coli B in equivalent quantities when either glucose or glycerol was the carbon source. Two enzymes, glucokinase and glucose 6-phosphate dehydrogenase, that are glucose-insensitive in wild-type E. coli B were formed in equivalent quantity on glucose or glycerol in both streptomycin-sensitive and streptomycin-dependent E. coli B. The results indicate a general decrease or relaxation of catabolite repression in the streptomycin-dependent mutant. The yield of streptomycin-dependent cells from glucose was one-third less than that of the streptomycin-sensitive strain. We conclude that the decreased efficiency of glucose utilization in streptomycin-dependent E. coli B is responsible for the relaxation of catabolite repression in this mutant.  相似文献   

15.
从活性污泥中分离筛选得到一株能代谢甘油生产1,3-丙二醇(1,3-PD)的菌株2-1,通过形态学鉴定、生理生化试验、16S rRNA序列分析对菌株分类学地位进行鉴定,用MEGA 4.1软件构建的系统发育树显示菌株2-1与Klebsiella pneumoniae(CP001891)的亲缘关系最近。16S rDNA序列同源性比较发现,菌株2-1与模式菌株同源率为95.4%,疑似为新种。对菌株2-1在5 L发酵罐中进行发酵特性研究,分批补料发酵时得到较高的1,3-PD终浓度,达到63.5 g/L,此时生产强度为2.19 g/(L.h),底物转化率0.64 mol/mol。  相似文献   

16.
A beta-phosphoglucomutase (beta-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of beta-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h(-1), while the deletion of beta-PGM resulted in a maximum specific growth rate of 0.05 h(-1) on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as beta-glucose 1-phosphate in the medium. Furthermore, the beta-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of alpha-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the beta-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded beta-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

17.
1,3-Propanediol (1,3-PDO) is an important three-carbon compound widely used in new polyester polymer materials. Natural organisms that can produce 1,3-PDO from glycerol were well studied. However, no natural microorganisms found could directly convert glucose to 1,3-PDO due to its insufficient glycerol synthesis pathway. In this study, two essential glycerol synthesis genes, CgGPD gene (encoding glycerol-3-phosphate dehydrogenase from Candida glycerinogenes) and ScGPP2 gene (encoding glycerol-3-phosphatase from Saccharomyces cerevisiae), were expressed in wild-type Klebsiella pneumoniae, a natural 1,3-PDO producers with reduction pathway for 1,3-PDO synthesis from glycerol. The results of fermentation, key enzyme activities, and metabolites analysis confirmed that recombinant K. pneumoniae now possessed a metabolic pathway capable of converting glucose to 1,3-PDO. The strain could produce 1,3-PDO from glucose with a final titer of 17.27 g/L with 40 g/L glucose in the medium, showing a 1.26-fold increase compared with 30 g/L glucose. Also, adding certain concentrations of glycerol could quickly initiate the 1,3-PDO synthetic pathway and promote the accumulation of 1,3-PDO, which could shorten the fermentation cycle. These results have important implications for further studies involving the use of one strain for bioconversion of glucose to 1,3-PDO.  相似文献   

18.
Clostridium pasteurianum produces industrially valuable chemicals such as n‐butanol and 1,3‐propanediol from fermentations of glycerol and glucose. Metabolic engineering for increased yields of selective compounds is not well established in this microorganism. In order to study carbon fluxes and to selectively increase butanol yields, we integrated the latest advances in genome editing to obtain an electrocompetent Clostridium pasteurianum strain for further engineering. Deletion of the glycerol dehydratase large subunit (dhaB) using an adapted S. pyogenes Type II CRISPR/Cas9 nickase system resulted in a 1,3‐propanediol‐deficient mutant producing butanol as the main product. Surprisingly, the mutant was able to grow on glycerol as the sole carbon source. In spite of reduced growth, butanol yields were highly increased. Metabolic flux analysis revealed an important role of the newly identified electron bifurcation pathway for crotonyl‐CoA to butyryl‐CoA conversion in the regulation of redox balance. Compared to the parental strain, the electron bifurcation pathway flux of the dhaB mutant increased from 8 to 46% of the overall flux from crotonyl‐CoA to butyryl‐CoA and butanol, indicating a new, 1,3‐propanediol‐independent pattern of glycerol fermentation in Clostridium pasteurianum.  相似文献   

19.
A novel microbial method of synthesizing (S)-1-phenyl-1,3-propanediol [(S)-PPD] was developed in this study. Our laboratory stock cultures were screened for microorganisms that stereospecifically produced (S)-PPD from 3-hydroxy-1-phenylpropane-1-one (HPPO) using an intact cell system. Of the 828 strains examined (321 bacteria, 233 yeasts and 274 molds), certain strains of Williopsis saturnus var. mrakii and Cryptococcus albidus were found to produce (S)-PPD with over 99% enantiomeric excess (e.e.). Screening identified W. saturnus var. mrakii AJ-5620 as the most productive strain, and this strain was used for further experiments. The (S)-PPD-producing reaction using intact W. saturnus var. mrakii AJ-5620 cells was carried out by successive feeding of HPPO. A total (S)-PPD yield of 9.9 g/l was produced in 20 h. The molar yield was 81% and the optical purity of the (S)-PPD produced was over 99% e.e.  相似文献   

20.
Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1-null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1delta nde1delta nde2delta gut2delta quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae. Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h(-1) at 100 g of glucose. liter(-1)). In aerated batch cultures grown on 400 g of glucose. liter(-1), this engineered S. cerevisiae strain produced over 200 g of glycerol. liter(-1), corresponding to a molar yield of glycerol on glucose close to unity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号