首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 2,4-dichloro-5-fluorophenyl bearing Mannich base (4 and 5) was prepared from triazole Schiff bases (3) by aminomethylation with formaldehyde and secondary/substituted primary amines. All newly synthesized compounds were screened for their antimicrobial activity. Compounds 3c, 4c, 4e and 4f exhibited promising antibacterial and compounds 3c, 5c, 5e and 5f showed good antifungal activity.  相似文献   

2.
A series of N-[4-(4-nitrophenoxy)phenyl]-4-(substituted)-1,3-thiazol-2-amines was synthesized. Structural elucidation was accomplished by 1H NMR, 13C NMR, IR, and elemental analyses of synthesized compounds. The title compounds were derived from 4-(4-nitrophenoxy)phenyl thiourea, which is the key intermediate in the synthesis of nitroscanate, an anthelmintic drug. Among the synthesized compounds, N-[4-(4-nitrophenoxy)phenyl]-4-(4-fluorophenyl)-1,3-thiazol-2-amine and N-[4-(4-nitrophenoxy)phenyl]-4-(4-methoxyphenyl)-1,3-thiazol-2-amine exhibited potent anthelmintic and antibacterial activities.  相似文献   

3.
Xanthine oxidase (XO) is responsible for the pathological condition called gout. Inhibition of XO activity by various pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidine-4-one derivatives was assessed and compared with the standard inhibitor allopurinol. Out of 10 synthesized compounds, two compounds, viz. 3-amino-6-(2-hydroxyphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one (3b) and 3-amino-6-(4-chloro-2-hydroxy-5-methylphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one (3g) were found to have promising XO inhibitory activity of the same order as allopurinol. Both compounds and allopurinol inhibited competitively with comparable Ki (3b: 3.56?µg, 3g: 2.337?µg, allopurinol: 1.816?µg) and IC50 (3b: 4.228?µg, 3g: 3.1?µg, allopurinol: 2.9?µg) values. The enzyme–ligand interaction was studied by molecular docking using Autodock in BioMed Cache V. 6.1 software. The results revealed a significant dock score for 3b (?84.976?kcal/mol) and 3g (?90.921?kcal/mol) compared with allopurinol (?55.01?kcal/mol). The physiochemical properties and toxicity of the compounds were determined in silico using online computational tools. Overall, in vitro and in silico study revealed 3-amino-6-(4-chloro-2-hydroxy-5-methylphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2–a]pyrimidin-4-one (3g) as a potential lead compound for the design and development of XO inhibitors.  相似文献   

4.
The substituted thiosemicarbazide moiety was placed at the C-2 position and 2-methylphenyl group at N-3 position of quinazoline ring and obtained compounds were tested for their antitubercular activities and antibacterial activities against selected gram-positive and gram-negative bacteria. The target compounds 1-(3-(2-methylphenyl)-4-oxo-3H-quinazolin-2-yl)-4-(substituted) thiosemicarbazides were obtained by the reaction of 2-hydrazino-3-(2-methylphenyl) quinazolin-4(3H)-one with different dithiocarbamic acid methyl ester derivatives. All synthesized compounds were also screened for their antimicrobial activity against selective gram-positive and gram-negative bacteria by agar dilution method. Among the series, 1-[3-(2-methylphenyl)-4-oxo-3H-quinazolin-2-yl]-4-[4-chlorophenyl]-thiosemicarbazide exhibited the most potent activity against S. typhi, E. coli, and B. subtilis, while 1-[3-(2-methylphenyl)-4-oxo-3H-quinazolin-2-yl]-4-[4-nitrophenyl]-thiosemicarbazide was the most potent against E. coli, B. subtilis, P. aeruginosa, S. typhi, and S. flexneri. These two compounds exhibited the antitubercular activity at the minimum concentration (3 μg/mL) that offered potential for further optimization and development of new antitubercular agents. The obtained results demonstrated promising antimicrobial and antitubercular activities of the synthesized quinazoline compounds which could be used as new scaffolds for improving their antimicrobial activity.  相似文献   

5.
The antifungal activity in vitro of the newly synthesized and previously reported compounds of 5-substituted 2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole series was evaluated. Their structures were confirmed by elemental analyses and IR, 1H and 13C NMR and mass spectra. The azole-resistant clinical isolates of Candida albicans and no-albicans Candida spp. were used in the antifungal tests. Some compounds exhibit higher activities than the comparatively studied antifungal drugs. Amino-1,3,4-thiadiazole derivatives exhibited higher (than other analogues) antifungal effects against Candida no-albicans spp. than against C. albicans. Derivatives with strong antifungal activity have a narrow range of lipophilicity values determined by the Villar approach.  相似文献   

6.
A series of novel thiazolo[3,2‐a]pyrimidines were synthesized and characterized by FT‐IR, 1H, 13C‐NMR and mass techniques. Their antioxidant activities were investigated by 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical scavenging assay and the results showed that all the synthesized compounds exhibit good antioxidant activity. In addition, it was found that any substituent on the aromatic ring of the products plays an important role in their antioxidant activity. In vitro cytotoxicity of compounds 4a – 4j was investigated using MTT cell viability assay. Among these compounds, 6‐ethyl 2,3‐dimethyl 5‐(4‐chlorophenyl)‐7‐methyl‐2,3‐dihydro‐5H‐[1,3]thiazolo[3,2‐a]pyrimidine‐2,3,6‐tricarboxylate ( 4e ) bearing a chlorine substituent displayed the highest cytotoxic effect (IC50=6.26±0.6 μm ) in comparison with doxorubicin (IC50=0.68±0.1 μm ) as a standard after 72 h. Therefore, it is assumed that these compounds could be used as effective antioxidant and cytotoxic agents.  相似文献   

7.
In search for a new antioxidant and antimicrobial agent with improved potency, we synthesized a series of benzofuran based 1,3,5-substituted pyrazole analogues (5a-l) in five step reaction. Initially, o-alkyl derivative of salicyaldehyde readily furnish corresponding 2-acetyl benzofuran 2 in good yield, on treatment with 1,8-diaza bicyclo[5.4.0]undec-7-ene (DBU) in the presence of molecular sieves. Further, aldol condensation with vanillin, Claisen-Schmidt condensation reaction with hydrazine hydrate followed by coupling of substituted anilines afforded target compounds. The structures of newly synthesized compounds were confirmed by IR, (1)H NMR, (13)C NMR, mass, elemental analysis and further screened for their antioxidant and antimicrobial activities. Among the tested compounds 5d and 5f exhibited good antioxidant property with 50% inhibitory concentration higher than that of reference while compounds 5h and 5l exhibited good antimicrobial activity at concentration 1.0 and 0.5 mg/mL compared with standard, streptomycin and fluconazole respectively.  相似文献   

8.
Two series of 3-(substituted phenyl)-5-alkyl-2,5-dihydrofuran-2-ones related to a natural product, (-)incrustoporine, were synthesized and their in vitro antifungal activity evaluated. The compounds with halogen substituents on the phenyl ring exhibited selective antifungal activity against the filamentous strains of Absidia corymbifera and Aspergillus fumigatus. On the other hand, the influence of the length of the alkyl chain at C(5) was marginal. The antifungal effect of the most active compound against the above strains was higher than that of ketoconazole, and close to that of amphotericin B. In order to verify the hypothesis about a possible relationship between the Michael-accepting ability of the compounds and their antifungal activity, a series of simple carbanalogues, 2-(substituted phenyl)cyclopent-2-enones, was prepared and subjected to antifungal activity assay as well.  相似文献   

9.
2-(4-Phenylthiazol-2(3H)-ylidene)-malononitrile was synthesized by treating 1-phenyl-2-thiocyanatoethanone with malononitrile. Reaction of 2-(4-phenylthiazol-2(3H)-ylidene)-malononitrile with hydrazine hydrate afforded 4-(4-phenylthiazol-2-yl)-1H-pyrazole-3,5-diamine, reaction with benzylidenemalononitrile yielded 2-(5-benzylidene-4-phenyl-5H-thiazol-2-ylidene)-malononitrile, and coupling with benzenediazonium chloride gave 2-(4-phenyl-5-phenylazo-3H-thiazol-2-ylidene)-malononitrile. Diaminopyrazole reacted with enaminonitrile to yield the 3-(4-phenylthiazol-2-yl)pyrazolo[1,5-a]pyrimidine-2,7-diamine. All synthesized compounds showed significant antimicrobial activities with MIC range of 5–750 µg/mL. The results demonstrated a correlation of the hydrophobicity of the compounds with their antimicrobial activity. The most potent antimicrobial compound was 2-(4-phenylthiazol-2(3H)-ylidene)-malononitrile.  相似文献   

10.
2-Phenyl-1H-indole-3-carbaldehyde-based barbituric acid, thiobarbituric acid, thiosemicarbazide, isoniazid, and malononitrile derivatives were synthesized under photochemical conditions. The antitumor activities of the synthesized compounds were evaluated on three different human cancer cell lines representing prostate cancer cell line DU145, Dwivedi (DWD) cancer cell lines, and breast cancer cell line MCF7. All the screened compounds possessed moderate anticancer activity, and out of all the screened compounds, 5-{1[2-(4-chloro-phenyl)2-oxo-ethyl]-2-phenyl-1H-indole-3-ylmethylene}-2-thioxo-dihydro-pyrimidine-4,6-dione (2b) and 5-{1[2-(4-methoxy-phenyl)2-oxo-ethyl]-2-phenyl-1H-indole-3-ylmethylene}-2-thioxo-dihydro-pyrimidine-4,6-dione (2d) exhibited marked antitumor activity against used cell lines. Additionally, barbituric acid derivatives were selective to inhibit cell line DWD and breast cancer cell lines.  相似文献   

11.
New propargylamines were synthesized in 72–75% yields by the interaction of 19-alkynylbetulin and 28-O-propargyl glycinamide of oleanolic acid with N-methylpiperazine under the Mannich reaction conditions. 19-[1-Methyl-4-prop-2-yn-1-yl-piperazine]-20,29,30-trinorbetulin was shown to manifest anticancer activity against one line of leukemia cells and two lines of colon cancer cells, whereas the growth of leukemia cells SR in the presence of 4-(4-methylpiperazin-1-yl)but-2-yn-1-yl-N-(3-hydroxy-28-oxoolean-12-en-28-yl)glycinate was 8%.  相似文献   

12.
In the present study, a series of 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were synthesized, characterized and evaluated for theirin vitroactivity, i. e., antimicrobial, antioxidant and anti-inflammatory. The target compounds were synthesized by condensation reaction of 3-hydroxy-2-naphthoic acid hydrazide with substituted benzaldehydes which were subjected to cyclization reaction with thioglycolic acid and ZnCl2 to get target compounds. The synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were examined for their antimicrobial activity and 3-hydroxy-N-(4-oxo-2-(3,4,5-trimethoxyphenyl)thiazolidin-3-yl)-2-naphthamide ( S20 ) exhibited the highest antimicrobial potential. The N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S5 ) displayed good antifungal potential against Rhizopus oryzae, whereas N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S20 ) showed the highest antioxidant potential and N-(2-(2,6-dichlorophenyl)-4-oxothiazolidin-3-yl)-3-hydroxy-2-naphthamide ( S16 ) displayed the highest anti-inflammatory activity. The results of molecular docking studies revealed that existence of hydrogen bonding and hydrophobic interactions with their respective proteins. In silico ADMET studies were carried out by Molinspiration, Pre-ADMET and OSIRIS property explorer to predict the pharmacokinetic behaviour of synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives.  相似文献   

13.
Knoevenagel cyclocondensations of α-hydroxy naphthaldehyde with β-oxodithioesters and ketene dithioacetals yielded 2H-benzo[f]chromene-2-thiones and 2H-benzo[f]chromen-2-ones, respectively, in high yields. The newly synthesized compounds were evaluated for antifungal and antibacterial activities. Among them, compounds (2-furyl)(3-thioxo-3H-benzo[f]chromen-2-yl)methanone and phenyl(3-oxo-3H-benzo[f]chromen-2-yl)methanone exhibited excellent antifungal activity against tested fungi Curvularia lunata and Fusarium moniliforme. The highest antibacterial activity against the tested bacteria Escherichia coli and Staphylococcus aureus was observed for (4-chlorophenyl)(3-oxo-3H-benzo[f]chromen-2-yl)methanone. The results of antimicrobial screening demonstrate that (2-furyl)(3-thioxo-3H-benzo[f]chromen-2-yl)methanone, phenyl(3-oxo-3H-benzo[f]chromen-2-yl)methanone, and (4-chlorophenyl)(3-oxo-3H-benzo[f]chromen-2-yl)methanone are promising as antimicrobial drugs.  相似文献   

14.
With the aim to find new compounds with high antifungal activity, 21 4‐amino‐5‐substituted‐1,2,4‐triazole Schiff bases ( 2a  –  2g , 3a  –  3g , and 4a  –  4g ) were designed and synthesized. Their antifungal activities against Pythium solani, Gibberlla nicotiancola, Fusarium oxysporium f. sp. niveum, Gibberlla saubinetii, Alternaria iycopersici, Phytophthora capsici, Physalospora piricola, Cercospora arachidicola hori, and Fusarium oxysporium f. sp. cucumber were tested, parts of the compounds exhibited excellent antifungal activity. This research provides useful information for further study of antifungal agents.  相似文献   

15.
A series of new tert-butyl 2-(substituted benzamido) phenylcarbamate (4a4j) were synthesized by the condensation of tert-butyl 2-amino phenylcarbamate (3) with various substituted carboxylic acid in the presence of EDCI and HOBt as coupling reagent, obtain in excellent yields. The structures of all newly synthesized compounds were characterized spectroscopically and evaluated for in vivo anti-inflammatory activity compared to the standard drug, indomethacin, by using the carrageenan-induced rat paw edema protocol. Most of the compounds exhibited a promising anti-inflammatory activity within 9 to 12 h, the percentage of inhibition values ranging from 54.239 to 39.021%. The results revealed that the compounds 4i and 4a exhibited better or equivalent anti-inflammatory activity with the percentage of inhibition of 54.239 and 54.130%, respectively, which was comparable to standard drug. In addition to experimental results, in silico docking studies was used as a tool to verify and expand the experimental outcomes.  相似文献   

16.
A series of novel 2-(chromon-3-yl)-4,5-diphenyl-1H-imidazoles (4a-h) were synthesized by one pot condensation of substituted 3-formylchromones (1a-h), benzil (2) and ammonium acetate (3) in refluxing acetic acid at 110 °C under N2 atmosphere. Allylation of compounds 4a-h with allyl bromide in the presence of fused K2CO3 furnished N-allyl-2-(chromon-3-yl)-4,5-diphenyl-1H-imidazoles (6a-h). The synthesized compounds were characterized spectroscopically and evaluated for in vitro antimicrobial activity against various pathogenic bacterial and fungal strains by disc diffusion method. Compounds bearing electron withdrawing substituents such as bromo (4f) showed significant inhibitory activity against S. cerevisiae (MIC 1.4 μg/ml) and 4g containing chloro substituent, displayed more inhibitory potential against C. albicans (MIC 1.5), as compared to the standard drugs. Compounds 6a and 4c exhibit remarkable inhibitory potential against B. subtilis with MIC 0.98 and 1.23, respectively. The time kill assay for active compound 6a was performed by viable cell count (VCC) method to elucidate the microbicidal nature of 2-(chromon-3-yl)imidazoles. A molecular docking study of most active compounds with target ‘lanosterol 14α-demethylase’ (CYP51) was performed to unravel the mode of antifungal action.  相似文献   

17.
The antifungal activity of Lactobacillus pentosus ?OCK 0979 depends both on the culture medium and on the fungal species. In the control medium, the strain exhibited limited antagonistic activity against indicator food-borne molds and yeasts. However, the supplementation of the bacterial culture medium with polyols (erythritol, lactitol, maltitol, mannitol, sorbitol, xylitol) or their galactosyl derivatives (gal-erythritol, gal-sorbitol, gal-xylitol) enhanced the antifungal properties of Lactobacillus pentosus ?OCK 0979. Its metabolites were identified and quantified by enzymatic methods, HPLC, UHPLC-MS coupled with QuEChERS, and GC-MS. The presence of polyols and gal-polyols significantly affected the acid metabolite profile of the bacterial culture supernatant. In addition, lactitol and mannitol were used by bacteria as alternative carbon sources. A number of compounds with potential antifungal properties were identified, such as phenyllactic acid, hydroxyphenyllactic acid, and benzoic acid. Lactobacillus bacteria cultivated with mannitol synthesized hydroxy-fatty acids, including 2-hydroxy-4-methylpentanoic acid, a well-described antifungal agent. Scanning electron microscopy (SEM) and light microscopy confirmed a strong antifungal effect of L. pentosus ?OCK 0979.  相似文献   

18.
Synthesis of a new series of diarylureas and amides having pyrrolo[3,2-b]pyridine scaffold is described. Their in vitro antiproliferative activity against human melanoma cell line A375 and HS 27 human fibroblast cell line was tested and the effect of substituents on the pyrrolo[3,2-b]pyridine was investigated. The newly synthesized compounds, except meta-substituted derivatives (Ijk and Ivw), generally showed superior or similar activity against A375 to Sorafenib. Among all of these derivatives, compounds Ir and It having 5-benzylamide substituted 4′-amide moieties showed the most potent antiproliferative activity against A375.  相似文献   

19.
An efficient synthesis of novel antifungal 3a,9a-dihydro-1-ethoxycarbonyl-1-cyclopenteno[5,4-b]benzopyran-4-ones (10a-j) through 1,3-dipolar cycloaddition of all carbon 1,3-dipole (7) with substituted 3-formylchromones (8a-j) has been developed. The synthesized compounds were characterized spectroscopically and evaluated in vitro for antifungal activity against various strains. Some of the compounds 10b, 10d and 10i exhibit significant inhibitory potential against Aspergillus niger, Saccahromyces cerevisiae and Candida albicans.  相似文献   

20.
In the present study we have synthesized (4-nitrophenyl)-[2-(substituted phenyl)-benzoimidazol-1-yl]-methanones, (2-bromophenyl)-[2-(substituted phenyl)-benzoimidazol-1-yl]-methanone analogues (1–14) and evaluated them for their antimicrobial and antiviral potential. The results of antimicrobial screening indicated that none of the synthesized compounds were effective against the tested bacterial strains. Compounds 3, 11, 13 and compounds 5, 11, 12 were found to be active against Aspergillus niger and Candida albicans respectively, and may be further developed as antifungal agents. Furthermore, evaluation against a panel of different viruses pointed out the selective activity of compounds 5 and 6 against vaccinia virus and Coxsackie virus B4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号