首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas putida 40RNF is a putative biological control agent (BCA) of Pythium damping-off of sugar beet. The survival of 40RNF during commercial seed treatment and its subsequent shelf-life (i.e. long-term viability and biocontrol activity) were assessed. Two methods were used to apply 40RNF to sugar beet seeds: incorporation into film-coats sprayed on to pre-pelleted seeds and incorporation into the pellet material prior to pelleting. Only 7.1% of applied 40RNF survived film-coating, but an initial concentration of 7 × 108 ensured that 83.3% of a pre-determined target rate of 6 × 107 |pellet was achieved. After 52 weeks of storage at 4°C,the numbers of 40RNF had declined by one to two orders of magnitude, with a decrease of approximately 50% in disease control. After 52 weeks at 18-20°C, 40RNF was below detectable limits (< 100|pellet), yet the biocontrol activity of the seed treatments was not reduced. The survival of 40RNF during incorporation into the pellet material was poor (< 0.2% of those applied, i.e. 5 × 105 pellet). However, bacterial viability and biocontrol efficacy were maintained at 100% of the control value for 24 weeks when stored at 18-20°C. The results indicate that commercial seed treatments and the storage of pellets at ambient temperatures has potential for the introduction of bacterial BCAs into the spermosphere.  相似文献   

2.
Sweet pepper seeds were osmotically conditioned in 0.4 M mannitolsolution for 4 d (at 25 °C, in darkness) before or afterstorage at 35 °C for up to six months, and their germinationand viability was compared with that of untreated seeds storedunder the same conditions. Seeds that had been osmoconditionedprior to storage retained a high rate of germination and germinatedto a high final percentage (from 80 to 50 per cent) at both15 and 25 °C throughout the storage period. By contrast,both the rate and total level of germination of untreated pepperseeds declined rapidly at both germination temperatures, andby three months of storage the total level of seed viabilitywas already less than 10 per cent. Seeds that were first storedat 35 °C, and then osmoconditioned just prior to germination,showed a decline in germinability which when tested at 25 °Cwas the same as for untreated seeds, while tested at 15 °Coccurred at a slightly slower rate than for untreated seeds. It is evident that osmoconditioning prior to storage, in additionto the acceleration of germination, resulted in a dramatic delayof the ageing rate, thus increasing considerably the longevityof seeds. On the other hand, osmoconditioning after storagedid not seem to have any significant effect on seed viability,though it enhanced the germination rate. Capsicum annuum, sweet pepper, seed, germination, osmoconditioning, priming, storage, viability, ageing, longevity  相似文献   

3.
Effects of dehydration, storage temperature and humidificationon germination of Salix alba andS. matsudana seeds were studied.Newly released seeds showed 100% germination before and afterdehydration to 11–12% moisture content. Germination ofthe high vigour lot (100% initial normal germination) was notaffected by dehydration to 6.7% moisture content but germinationdecreased with further dehydration to 4.3%. The lower vigourlot (75% initial normal germination) was more susceptible todehydration and germination decreased following dehydrationto 6.7% moisture content. Dry seeds of both species survivedimmersion in liquid nitrogen without loss of viability. Thegermination of seeds stored with 9% moisture content decreasedto 35–40% in 5 months at -20°C or in 2 months at 5°C.However, at 25°C seeds entirely lost viability within 2weeks. Seeds showed improved performance when stored at -70°C> - 20°C > 5°C > 25°C and tolerated dehydrationto a moisture content in equilibrium with 15% relative humidity.Results suggest that they are orthodox in storage behaviouralthough they are short-lived. Humidification treatment of lowvigour seed lots resulted in a remarkable increase in germinationpercentage. Copyright 2000 Annals of Botany Company Salix alba, Salix matsudana, willow, seed storage behaviour, dehydration, humidification, cryopreservation  相似文献   

4.
Seeds of lettuce (Lactuca sativa L.) and sunflower (Helianthusannuus L.) were stored hermetically at 35 °C with 11 differentmoisture contents between 1·3 and 6·9%, and between1·3 and 7·1% of fresh mass, respectively. Germinationand vigour (mean germination time, root length, seedling dryweight) were determined after storage for 0, 8, or 16 weeks(sunflower) or 0, 8, 16, or 48 weeks (lettuce) in these environmentsfollowed by various humidification treatments (to avoid imbibitioninjury). The range of seed storage moisture contents over whichdeterioration was minimized depended upon the criterion of deteriorationused, and varied somewhat between species. Comparison of theseranges for seeds stored for the longest durations showed thatfor some criteria seed performance was poorer (P < 0·05)at both the lowest and highest moisture contents investigatedthan at certain of the intermediate storage moisture contents(e.g, most rapid germination occurred in sunflower followingstorage at 2·2-4·7% moisture content), whereasfor other criteria all the drier storage moisture contents weresuperior to the more moist (e,g. greatest seedling growth occurredin sunflower following storage at 1·3-5·1% moisturecontent). But none of these results suggested that lettuce andsunflower seeds stored hermetically at 2·5-3·0%or 2·2-2·5% moisture content, respectively, wereless vigorous than at any other moisture content tested. Inboth species, these storage moisture contents are in equilibriumwith about 8-10% relative humidity (r.h.) at 20 °C, whichis similar to and indeed marginally less than the 10-13% r.h.recommended following earlier studies on the longevity of seedsin hermetic storage at much warmer temperatures. Thus, theseresults show no evidence that the optimum seed moisture contentfor storage increases with decrease in temperature, at leastover the range 35-65 °C, as has been suggested elsewhere.We conclude that the international recommendation for the long-termseed storage for genetic conservation at 5 ± 1% moisturecontent should not be revised upwardly, and that in situationswhere refrigeration cannot be provided storage at even lowermoisture contents is worthy of further investigation for thoseseeds in which desiccation at 20 °C to equilibrium at 10%r.h. results in moisture contents well below 5%.Copyright 1995,1999 Academic Press Helianthus annuus L., sunflower, Lactuca sativa L., lettuce, desiccation, seed storage, seed vigour  相似文献   

5.
The impact of growth temperature was evaluated for the fungal plant pathogen Mycoleptodiscus terrestris over a range of temperatures (20–36°C). The effect of temperature on biomass accumulation, colony forming units (cfu), and microsclerotia production was determined. Culture temperatures of 24–30°C produced significantly higher biomass accumulations and 20–24°C resulted in a significantly higher cfu. The growth of M. terrestris was greatly reduced at temperatures above 30°C and was absent at 36°C. The highest microsclerotia concentrations were produced over a wide range of temperatures (20–30°C). These data suggest that a growth temperature of 24°C would optimize the parameters evaluated in this study. In addition to growth parameters, we also evaluated the desiccation tolerance and storage stability of air-dried microsclerotial preparations from these cultures during storage at 4°C. During 5 months storage, there was no significant difference in viability for air-dried microsclerotial preparations from cultures grown at 20–30°C (>72% hyphal germination) or in conidia production (sporogenic germination) for air-dried preparations from cultures grown at 20–32°C. When the effect of temperature on germination by air-dried microsclerotial preparations was evaluated, data showed that temperatures of 22–30°C were optimal for hyphal and sporogenic germination. Air-dried microsclerotial preparations did not germinate hyphally at 36°C or sporogenically at 20, 32, 34, or 36°C. These data show that temperature does impact the growth and germination of M. terrestris and suggest that water temperature may be a critical environmental consideration for the application of air-dried M. terrestris preparations for use in controlling hydrilla.  相似文献   

6.
Effects of temperature, light, NaCl and polyethylene glycol(PEG)-6000 on seed germination and radicle growth in a halophyticshrub, Kalidium caspicum(L.) Ung.-Sternb. were investigated.When seeds were incubated in deionized water at constant temperaturesbetween 10 and 30°C, the percentage germination in the darkexceeded 75%; light suppressed seed germination at alternatingtemperatures. Incubating seeds with a hypersaline solution ofNaCl for 30 d had no adverse effect on their germinability.The percentage germination of seeds incubated with a –0.8MPa NaCl solution was 73, 80 and 54% at 10, 20 and 30°C,respectively, but all radicles died before their length exceeded5 mm. In contrast, when seeds were incubated with a –0.8MPa PEG solution at 20°C, 68% of seeds germinated, and 95%of the emerging radicles survived beyond 5 mm. The high sensitivityof small radicles of this species to salinity indicated thatsalt must be removed from the soil surface for seedling establishment.Copyright2000 Annals of Botany Company Chinese desert, radicle growth, germination, halophyte, Kalidium caspicum, salinity  相似文献   

7.
An Intermediate Category of Seed Storage Behaviour?: I. COFFEE   总被引:15,自引:3,他引:12  
Seeds of four cultivars of arabica coffee (Coffea arabica L.)were tested for germination following hermetic storage for upto 12 months at several different combinations of temperaturesbetween –20 °C and 15 °C and moisture contentsbetween 5% and 10% (wet basis). Most of the seeds from one cultivarwithstood desiccation to between 5% and 6% moisture content,a seed water potential of approximately –250 MPa, butthose of the remaining three cultivars were much more sensitiveto desiccation damage. Moreover, in all four cultivars, seedlongevity at cool and sub-zero temperatures, and at low moisturecontents did not conform with orthodox seed storage behaviour:viability was lost more rapidly under these conditions thanat either warmer temperatures or higher moisture contents. Theresults confirm that coffee seeds fail to satisfy the definitionsof either typical orthodox or recalcitrant seed storage behaviour.These results, therefore, point to the possibility of a thirdcategory of storage behaviour intermediate between those oforthodox and recalcitrant seeds. One of the main features ofthis category is that dry seeds are injured by low temperatures. Key words: coffee, Coffea arabica L., seed storage, seed longevity, desiccation, temperature  相似文献   

8.
Crisp lettuce plants cv. Saladin were grown from the time they started flowering, at 20/10°C (16 h day, 8 h night), 25/15°C and 30/20°C in glasshouses on two occasions in 1985. Yields of seed increased from, on average, 15 g to 27 g and then fell to 20 g per plant with progressive increases in temperature. The number of mature florets per plant increased with temperature but the number of seeds per mature floret was lower at 20/10°C and 30/20°C than at 25/15°C. An increase in temperature reduced mean seed weight by up to 45%, seed volume by 15%, cell numerical volume density (Nv) by 27% and the number of cells per seed by 39%. Percentage seed germination reached a maximum early in seed development at the stage when the pappus appeared through the involucral bracts. Differences in percentage germination and vigour of seeds (slope test) from different temperatures were accounted for largely by the effects on mean seed weight. However, when germinated at 30°C seeds produced at 30/20°C germinated more readily than those produced at 25/15°C or 20/10°C. Seed vigour gradually increased with an increase in the length of storage after harvest, reaching a maximum after 260 days. In general, seeds produced at 25/15°C exhibited a greater variation in numbers of seeds per floret, Nv, seed weight, times of seedling emergence, seedling and mature head weight than seeds produced at lower or higher temperatures.  相似文献   

9.
Hilton, J. R. and Thomas, J. A. 1987. Changes in respiratorypotential of dormant and non-dormant Galium aparine L. (cleavers)seeds during dry storage.—J. exp. Bot. 38: 1484–1490. Pre-germinative rates of O2 uptake of two collections of Galiumaparine L. seed were compared throughout a 9 month period ofdry storage at 4 °C, 23 °C and at ambient (frost-protected)temperatures. Uptake of O2 by the dormant seeds was generallyhigher than that of the less dormant seeds except when freshly-harvested.Moreover, changes in the O2 consumption of seeds stored at ambienttemperatures could be associated with periods of germinationand seedling emergence in the field. The results are discussedin relation to changes in respiratory metabolism during dormancybreakage.  相似文献   

10.
The effects of osmoconditioning on the germination at 15 and25 °C of pepper (Capsicum annuum L.) seeds were studiedover a 3-year period with respect to temperature of storage.Untreated seeds stored at 5 °C showed high germinabilitythroughout the entire storage period, whereas untreated seedsstored at 25 °C showed a progressive decline in germinability,especially when assayed at 15 °C. Seeds that had been osmoconditionedprior to storage retained a high level of germinability irrespectiveof either storage or germination temperatures. When seeds thathad been stored at 25 °C were osmoconditioned after storage,there was a significantly higher germinability (assayed at 15 °C) in comparison with the corresponding untreated seeds.Seeds that were osmoconditioned twice (prior to and after storage)germinated in a similar way to those that had been osmoconditionedonce only Lactuca saliva L., lettuce, Hordeum oulgare L., barley, seed storage, moisture content, relative humidity, water potential, temperature, oxygen  相似文献   

11.
Dimorphic seeds of Atriplex prostrata were removed from cold dry storage monthly over a one year period to test for fluctuations in seed dormancy and germination rate. For each seed type, four replicates of 25 seeds were exposed to four alternating night/day temperature regimes mimicking seasonal fluctuations in Ohio: 5/15 °C; 5/25 °C; 15/25 °C and 20/35 °C with a corresponding 12-h photoperiod (20 μmol m−2 s−1; 400 – 700 nm). We found a significant three-way interaction of seed size, temperature and month for both percent germination and the rate of germination. Large seeds showed the greatest germination at the 20/35 °C and 5/25 °C temperature regimes and small seeds at the 5/25 °C regime. Large seeds had greater germination at all temperatures as compared to small seeds. Large seeds had the fastest germination rates at 20/35 °C followed by 5/25 °C whereas small seeds had the fastest rates at 5/25 °C followed by 20/35 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Rodent seed predation and seedling recruitment in mesic grassland   总被引:11,自引:0,他引:11  
Seedling recruitment of two grasses (Arrhenatherum elatius and Festuca rubra) and two herbs (Centaurea nigra and Rumex acetosa) was measured in areas with and without rodents to which seeds of each species were sown at three seed densities (1000, 10,000 and 50,000 seeds m−2) in two seasons (spring and autumn 1995). Seed removal was measured for 10-day periods and the fate of seedlings was followed for 15 months after sowing. The proportion of seed removed ranged from 6 to 85% and increased with increasing seed density for each species. Rodents had no effect on seedling emergence or survival in the spring sowing. In the autumn sowing, rodents reduced seedling emergence of all four species sown at 1000 and 10,000 seeds m−2 but had no impact at 50,000 seeds m−2, presumably because of microsite limitation. We suggest the difference between spring and autumn arose because emergence was seed limited in autumn but microsite limited in spring; microsite availability was higher in autumn because a summer drought killed plants, reduced plant biomass and opened up the sward. Fifteen months after the autumn sowing, fewer A. elatius and C. nigra seedlings survived on plots exposed to rodents. This result reflected not only the reduced seedling emergence but also increased seedling mortality (seedling herbivory) in sites exposed to rodents. In contrast, F. rubra and R.acteosa showed density-dependent seedling survival which compensated for initial differences in seedling emergence, so that no effect of rodents remained after 15 months. The results suggest that rodent seed predation and seedling herbivory exert strong effects on seedling recruitment of A.elatius and C. nigra when recruitment conditions are favourable (conditions that lead to high microsite availability) and may contribute to both species being maintained at low densities in the grassland. The results also demonstrate that highly significant impacts of rodent seed predation at the seedling emergence stage can disappear by the time of plant maturation. Received: 2 March 1998 / Accepted: 28 September 1998  相似文献   

13.
The aim of this study was to determine if loss of germinability in Pyrus betulaefolia seeds stored at 4°C and at room temperature is associated with a loss of membrane lipid peroxidation or changes in antioxidant enzyme activities. The results indicated that germination percentage clearly decreased when seeds were stored at room temperature rather than at 4°C from 6 to 12 months. Room-temperature storage of the pear stock seed for 12 months decreased germination to 15.52%, but germination percentage was not changed when seed was stored at 4°C for 12 months. MDA, a marker for membrane lipid peroxidation, increased significantly under room-temperature storage conditions. Antioxidant enzyme (SOD, POD, and CAT) activities were a good indicator of germination percentage in pear stock seeds. Antioxidant enzyme activities of pear stock seeds at 4°C were higher than antioxidant enzyme activities in seeds stored at room temperature from 6 to 12 months. Antioxidant enzyme activities of the pear stock seed decreased markedly under conditions of room-temperature storage from 6 to 12 months. The results of this study showed that long-term room-temperature storage was detrimental for maintaining the vigor of P. betulaefolia seeds. The mechanisms responsible for this outcome are a higher level of membrane lipid peroxidation and a lower level of activity of antioxidant enzymes.  相似文献   

14.
Data are given for Kochia indica seeds showing retention ofviability after storage for various periods of time open tothe air under laboratory conditions, open at 30° C., openat 38° C., and sealed over CaCl2 at 30° C. Seeds have been stored without deterioration at 30° C. sealedover CaC12 for over 14 months. Rapid deterioration of seed inopen storage at laboratory temperature and at 30° C. showsthat loss of viability is accelerated by moisture more thanby temperature.  相似文献   

15.
Seeds of barley (Hordeum vulgare L.) and mung bean (Vigna radiata(L.) Wilczek), with orthodox seed storage behaviour, were imbibedfor between 8 h and 96 h at 15 °C and 25 °C, respectively,while barley seeds were also maintained in moist aerated storageat 15 °C for 14 d. These seeds and seedlings, together withcontrols, were then dried to various moisture contents between3% and 16% (wet basis) and hermetically stored for six monthsat —20°C, 0°C or 15°C. In both species, neitherdesiccation nor subsequent hermetic storage of the control lotsresulted in loss in viability. The results for barley seedsimbibed for 24 h were similar to the control, but desiccationsensitivity increased progressively with duration of imbibitionbeyond 24 h in barley or 8 h in mung bean; these treatmentsalso reduced the longevity of the surviving seeds in air-drystorage. Loss in viability in barley imbibed for 48 h was mostrapid at the two extreme seed storage moisture contents of 3·6%and 14·3%, and in both these cases was more rapid at15 °C than at cooler temperatures. Similarly, for mung beanimbibed for 8 h, loss in viability was most rapid at the lowest(4·3%) moisture content, but in this case it was morerapid at –20 °C than at warmer temperatures. Thus,these results for the storage of previously imbibed orthodoxseeds conform with the main features of intermediate seed storagebehaviour Key words: Barley, Hordeum vulgare L., mung bean, Vigna radiata (L.) Wilczek, desiccation sensitivity, seed longevity, seed storage behaviour  相似文献   

16.
The ability of Rhizoctonia solani AG‐1 IA, the causal agent of rice sheath blight, to survive in diseased rice straw and as sclerotia and mycelia was investigated. After storage for 10 months at 4°C, 25°C and non‐air‐conditioned natural room temperature (NRT, temperature range from 6°C to 35°C), sclerotia placed inside a desiccator, soaked in sterile water or immersed in wet paddy soil were viable. In contrast, only 15% of sclerotia in dry paddy soil survived. Survival of mycelia was severely affected by temperature and humidity. After 10 months in a desiccator at 4°C, 55% of mycelia samples could survive, whereas at 25°C and NRT, mycelial samples survived for only 7 and 5 months, respectively. However, mycelia stored in sterile water at constant temperatures (4°C or 25°C) survived for 10 months. A certain amount of UV radiation had no obvious effect on the survival of sclerotia or mycelia. The survival rate of the fungus in diseased rice straw stored for 16 months could reach 100% at 4°C, 50% at 25°C and 35% at NRT. The survival rates of the pathogen in diseased rice straw buried in dry, wet and flooded paddy soils after 10‐month storage at NRT were 75, 100 and 100%, respectively, indicating that soil humidity is a crucial factor for the survival of this fungus.  相似文献   

17.
Five Trichoderma strains were grown on rice, on vermiculite plus potato-dextrose broth (PDB), on potato-dextrose agar (PDA) or in liquid cultures supplemented with glycerol, KCl or polyethylene glycol (PEG) at -1 MPa or - 2 MPa. Conidia were coated on seeds through a methyl cellulose coating or through an industrial film-coating process. The conidial yield decreased with glycerol, KCl or PEG compared with PDB alone. The percentage viability was from 23 to 44% after methyl cellulose coating, regardless of the culture conditions for conidial production. In general, the industrial coating resulted in lower numbers of living conidia. The viability during storage was enhanced when vermiculite, rice or PDA were used as substrates for fungal growth. Nevertheless, temperature of storage was found to be more critical to spore survival than the substrate used for spore production; conidial viability on seeds did not exceed 4 months at 15 C. Solid and liquid cultures produced conidia able to control R. solani and P. ultimum when applied to seeds through industrial film coating. The level of disease suppression varied with the number of viable conidia/seed and with the culture medium used for conidial production. The three main conditions for further industrial application-high yields, longevity and biocontrol effectiveness-might be optimized by selecting the appropriate medium (liquid or solid), water potential and solutes used.  相似文献   

18.
Biodiversity conservation programmes are underpinned by seed banking following drying to low water contents (WC), and supported by both the assessment and prediction of seed viability over time. The means of judging viability is thus crucial to the comprehension of seed vigour. We selected seeds of three species and one hybrid in the Salicaceae likely to have variation in tolerance to drying, processing and storage, including in relation to cryobanking, and compared survival growth as radicle emergence (germination) and normal seedling production. With three seed lots of Salix gracilistyla, air-drying to 8–10 % WC enhanced seed survival after 40 days’ storage at 5 °C as compared with non-treated seeds at 14–20 % WC. Four seed lots of Populus alba × P. glandulosa showed equally high germination (88–100 %) and proportions of normal seedlings (81–99 %) when stored at 5 °C for 7–10 weeks. Among seven seed lots of S. gracilistyla, two groups with different storage behaviour could be statistically distinguished with normal seedling production ranging from 0 to 45 % after storage at 5 °C for 13 weeks. Seed tolerance to WC manipulation and cryopreservation was very variable among species and seed lots. Seed lots of S. hallaisanensis and S. gracilistyla with ~80 % germination survived cryopreservation at 10 % WC, but were sensitive to lower WCs. In contrast, Populus seeds had greater desiccation tolerance combined with cryopreservation capability. With seed lots of all species and hybrids, cryopreservation had little effect on viability unless the high moisture freezing limit had been exceeded (~10–20 % WC, depending on seed lot). However, under all conditions of handling (drying, rehydration, storage at 5 °C or cryopreservation) using germination as the only indicator of viability over-estimated survival compared with normal seedling production.  相似文献   

19.
Seeds of Delphinium fissum subsp. sordidum are physiologically dormant at maturity, with underdeveloped embryos; thus they have morphophysiological dormancy (MPD). The aims of this study were to determine the requirements for embryo growth, dormancy break and germination, to characterise the type of seed dormancy and to evaluate the effects of light, seed age, pollination mechanism, and inter-annual and inter-population variability on germinative ability. After 3 months of incubation at 5°C (cold stratification) in darkness conditions, the mean embryo length increased from 5.6 to 2.07 mm, with 76% of seeds germinating. Conversely, embryos of seeds incubated during 3 months at 20/7 or 28/14°C hardly grew and no germination was recorded. Since cold stratification was the only requirement for the loss of MPD, and both dry storage in laboratory conditions and warm stratification prior to cold stratification shortened the cold stratification period required for germination, it could be concluded that D. fissum subsp. sordidum seeds have intermediate complex MPD. Cold stratification and incubation in darkness conditions promoted higher germination percentages than those in light. In addition, germinative ability increased with seed age up to 8 months (reaching 96% at 5°C in darkness), showed a pronounced inter-annual and inter-population variability, as well as a significant decrease in seeds coming from pollination by geitonogamy. High temperatures (25/10 or 28/14°C) induced seeds to secondary dormancy, so seedling emergence in the greenhouse was restricted to February–March. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter. This study is the first one to document a gradual increase in germination percentage with seed age for plant species with intermediate complex MPD.  相似文献   

20.
Temperature requirements for the breaking of seed dormancy and germination inPrimula sieboldii E. Morren and the annual surface-soil temperature regime in one of its natural habitats were investigated in order to clarify the germination responses determining the seedling emergence seasonality of the species. In a grassland nature reserve in an abandoned flood plain of the Arakawa River, natural seedling emergence of the species was shown to be restricted to mid- to late-spring before the closure of seasonal vegetational gaps, when the daily mean soil surface temperature reached about 15°C, accompanied by large daily fluctuations of about 10°C. Mature seeds collected in late June were never able to germinate at any constant temperature in the range of 8–40°C unless they had been previously subjected to moist-chilling treatment. The proportion of seeds which were released from dormancy increased with increasing duration of the moist-chilling treatment at 2°C, 70–85% of seeds becoming germinable at 16–28°C after 12 weeks of pretreatment at 2°C. The thermal time required for the germination of the thus-pretreated seed population was 905–1690 Kh with a base temperature of around 5°C. Fluctuating temperatures between 24°C and 16 or 12°C had a remarkable dormancy-breaking effect, inducing considerably quick germination in most of the seeds previously subjected to 2°C moist-chilling for 8 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号