首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1-Aminocyclopropane-1-carboxylate (ACC) synthase (ACS; EC 4.4.1.14) is the key regulatory enzyme of the ethylene biosynthetic pathway and is encoded by a multigene family in Arabidopsis thaliana, tomato, mung bean and other plants. Southern blot analysis revealed the existence of at least five ACS genes in white lupin (Lupinus albus L.) genome. Four complete and one partial sequences representing different ACS genes were cloned from the lupin genomic library. The levels of expression of two of the genes, LA-ACS1 and LA-ACS3, were found to increase after hypocotyl wounding. Apparently, these two genes were up-regulated by exogenous IAA treatment of seedlings. The LA-ACS3 mRNA levels were also elevated in the apical part of hypocotyl, which is reported to contain a high endogenous auxin concentration. This gene may be involved in the auxin- and ethylene-controlled apical hook formation. The expression of the LA-ACS4 gene was found to be almost undetectable. This gene may represent a “silent” twin of LA-ACS5 as these two genes share a considerable level of homology in coding and non-coding regions. The LA-ACS5 mRNA is strongly up-regulated in the embryonic axis of germinating seeds at the time of radicle emergence, and was also found in roots and hypocotyls of lupin seedlings. Received: 19 July 1999 / Accepted: 3 March 2000  相似文献   

2.
3.
4.
Pollination of many flowers initiates a sequence of precisely regulated developmental events that include senescence of the perianth and development of the ovary. The plant hormone ethylene is known to play a key role in regulating the biochemical and anatomical changes that constitute the postpollination syndrome. For this reason, we have studied the pollination syndrome in Phalaenopsis orchids by examining the spatial and temporal location of ethylene biosynthesis within the orchid flower, and how this biosynthesis is regulated by factors that influence expression of genes that encode key enzymes in the ethylene biosynthetic pathway. In particular, we examined the role in the postpollination syndrome of the expression of the gene for 1-aminocyclopropane-1-carboxylate (ACC) oxidase, which catalyzes the conversion of ACC to ethylene. In vivo incubation of tissues with the ethylene precursor ACC demonstrated that ACC oxidase activity increases after pollination in the stigma, contrary to the observation that activity is constitutive in petunia and carnation gynoecia. RNA blot hybridization of floral tissues indicates that the increase in ACC oxidase activity is due to de novo synthesis of mRNA and presumably protein, which is induced after pollination. Furthermore, the pattern of induction is consistent with a model of coordinate regulation of gene expression in which the pollination signal travels to other organs of the flower to induce their ethylene production. We have also used in situ hybridization to define further the temporal and spatial expression of ACC oxidase within the floral organs, showing that expression, and,by inference, the capability to oxidize ACC to ethylene, is induced in all living cells of the tissues examined after pollination. These findings contrast with work in petunia that suggests that ACC oxidase is localized to the stigmatic surface.  相似文献   

5.
This paper reports on a potential physiological target of okadaic acid (OA), the toxin metabolite responsible for shellfish poisoning and, consequently, human intoxication. OA is a potent promoter of tumor activity, most likely by inhibiting protein phosphatase 1 and 2A (Adv. Cancer. Res. 61 (1993) 143). However, all of its cellular targets have not yet been characterized. The interaction of OA with alkaline phosphatase (ALP) has been investigated in view of its protein phosphatase inhibition activity. Kinetic analysis of ALP from Escherichia coli, human placental and calf intestinal ALP has shown that OA acts as a non-competitive inhibitor of ALP. The bacterial enzyme displays a higher affinity for OA (K(i) 360 nM) than the eukaryotic proteins (human placental ALP, K(i) 2.05 microM; calf intestinal ALP, K(i) 3.15 microM). The inhibition by OA suggests a putative role of ALP in the phosphorylation status, through regulation of the phosphorylation/dephosphorylation equilibrium of proteins with phosphoseryl or phosphothreonyl residues.  相似文献   

6.
7.
Ethylene plays an essential role in response to hypoxic stress in plants. In most plant species, 1-aminocyclopropane-1-carboxylate synthase (ACS) is the key enzyme that regulates the production of ethylene. We examined the expression of ACS genes in Arabidopsis during hypoxia. Our data showed that the expression of 4 of the 12 Arabidopsis ACS genes, ACS2, ACS6, ACS7, and ACS9, is induced during hypoxia with three distinct patterns. The hypoxic induction of ACS9 is inhibited by aminooxy acetic acid, an inhibitor of ethylene biosynthesis. In addition, the hypoxic induction of ACS9 is also reduced in etr1-1 and ein2-1, two ethylene insensitive mutants in ethylene-signaling pathways, whereas the addition of 1-aminocyclopropane-1-carboxylic acid, a direct precursor of ethylene, does not induce ACS9 under normoxic conditions. These results indicate that ethylene is needed, but not sufficient, for the induction of ACS9 during hypoxia. This pattern of regulation is similar to that of ADH that encodes alcohol dehydrogenase, which we have reported previously. In contrast, the increased ethylene production during hypoxia has an inhibitory effect on ACS2 induction in roots, whereas ethylene has no effect on the hypoxic induction of ACS6 and ACS7. Based on these results, we propose that two signaling pathways are triggered during hypoxia. One pathway leads to the activation of ACS2, ACS6, and ACS7, whereas the other pathway leads to the activation of ADH and ACS9.  相似文献   

8.
9.
10.
11.
Feng L  Kirsch JF 《Biochemistry》2000,39(10):2436-2444
L-Vinylglycine (L-VG) has been shown to be a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate (ACC) synthase [Satoh, S., and Yang, S. F. (1989) Plant Physiol. 91, 1036-1039] as well as of other pyridoxal phosphate-dependent enzymes. This report demonstrates that L-VG is primarily an alternative substrate for the enzyme. The L-VG deaminase activity of ACC synthase yields the products alpha-ketobutyrate and ammonia with a k(cat) value of 1.8 s(-1) and a K(m) value of 1.4 mM. The k(cat)/K(m) of 1300 M(-1) s(-1) is 0.17% that of the diffusion-controlled reaction with the preferred substrate, S-adenosyl-L-methionine. The enzyme-L-VG complex partitions to products 500 times for every inactivation event. The catalytic mechanism proceeds through a spectrophotometrically detected quinonoid with lambda(max) of 530 nm, which must rearrange to a 2-aminocrotonate aldimine to yield final products. Alternative mechanisms for the inactivation reaction are presented, and the observed kinetics for the full reaction course are satisfactorily modeled by kinetic simulation. The inactive enzyme is an aldimine with lambda(max) of 432 nm. It is resistant to NaBH(3)CN but is reduced by NaBH(4). ACC synthase is now expressed in Pichia pastoris with an improved yield of 10 mg/L.  相似文献   

12.
The 1.6-A crystal structure of the covalent ketimine complex of apple 1-aminocyclopropane-1-carboxylate (ACC) synthase with the potent inhibitor l-aminoethoxyvinylglycine (AVG) is described. ACC synthase catalyzes the committed step in the biosynthesis of ethylene, a plant hormone that is responsible for the initiation of fruit ripening and for regulating many other developmental processes. AVG is widely used in plant physiology studies to inhibit the activity of ACC synthase. The structural assignment is supported by the fact that the complex absorbs maximally at 341 nm. These results are not in accord with the recently reported crystal structure of the tomato ACC synthase AVG complex, which claims that the inhibitor only associates noncovalently. The rate constant for the association of AVG with apple ACC synthase was determined by stopped-flow spectrophotometry (2.1 x 10(5) m(-1) s(-1)) and by the rate of loss of enzyme activity (1.1 x 10(5) m(-1) s(-1)). The dissociation rate constant determined by activity recovery is 2.4 x 10(-6) s(-1). Thus, the calculated K(d) value is 10-20 pm.  相似文献   

13.
14.
15.

Main conclusion

Floral primordia-targeted expression of the ethylene biosynthetic gene, ACS , in melon suggests that differential timing and ethylene response thresholds combine to promote carpels, inhibit stamens, and prevent asexual bud formation. Typical angiosperm flowers produce both male and female reproductive organs. However, numerous species have evolved unisexuality. Melons (Cucumis melo L.) can produce varying combinations of male, female or bisexual flowers. Regardless of final sex, floral development begins with sequential initiation of all four floral whorls; unisexuality results from carpel or stamen primordia arrest regulated by the G and A loci, respectively. Ethylene, which promotes femaleness, is a key factor regulating sex expression. We sought to further understand the location, timing, level, and relationship to sex gene expression required for ethylene to promote carpel development or inhibit stamen development. Andromonoecious melons (GGaa) were transformed with the ethylene biosynthetic enzyme gene, ACS (1-aminocyclopropane-1-carboxylate synthase), targeted for expression in stamen and petal, or carpel and nectary, primordia using Arabidopsis APETALA3 (AP3) or CRABSCLAW (CRC) promoters, respectively. CRC::ACS plants did not exhibit altered sex phenotype. AP3::ACS melons showed increased femaleness manifested by gain of a bisexual-only phase not seen in wild type, decreased male buds and flowers, and loss of the initial male-only phase. In extreme cases, plants became phenotypically hermaphrodite, rather than andromonoecious. A reduced portion of buds progressed beyond initial whorl formation. Both the ACS transgene and exogenous ethylene reduced the expression of the native carpel-suppressing gene, G, while elevating expression of the stamen-suppressing gene, A. These results show ethylene-mediated regulation of key sex expression genes and suggest a mechanism by which temporally regulated ethylene production and differential ethylene response thresholds can promote carpels, inhibit stamens, and prevent the formation of asexual buds.  相似文献   

16.
17.
Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl2, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl2. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 μM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 μM TDZ plus 50 μM CoCl2 reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl2 either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression.  相似文献   

18.
19.
An important trait of tomato is the rate of fruit ripening, strongly dependent on ethylene production. The ripening-related ethylene synthesis in tomato is controlled mainly by 1-aminocyclopropane-1-carboxylate synthase LE-ACS2 and LE-ACS4 isoenzymes (Rottmann et al., 1991, J. Mol. Biol. 222: 937; Lincoln et al., 1993, J. Biol. Chem. 268: 19422; Barry et al., 2000, Plant Physiol. 123: 979). In spite of numerous reports on the LE-ACS2 and LE-ACS4 gene expression, only ones considered the genomic organisation each of these genes (Rottmann et al., 1991; Lincoln et al., 1993) reported one copy of each of these genes in tomato cv VF36. In this article we suggest that the genomic organisation of LE-ACS2 and LE-ACSS4 genes may depend on tomato cultivars and may differ from that described by the above authors. The results of Southern analyses of genomic DNAs from 17-day old seedlings (cultivars Jaga, Halicz, Betalux, New Yorker) imply that the genomic organisation of LE-ACS2 and LE-ACS4 genes in Polish cultivars differs from that reported for cv VF36.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号