首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A liquid chromatography stationary phase containing immobilized membranes obtained from a cell line that expresses the human organic cation transporter (hOCT1-IAM) has been used to study the binding of the enantiomers of propranolol, atenolol, pseudoephedrine, and alpha-methylbenzylamine to the immobilized hOCT1. Frontal displacement chromatography was used to determine the binding affinities (K(d) values), and the data demonstrate that there was an enantioselective difference in the K(d) values of the enantiomers of propranolol, atenolol, and pseudoephedrine, while alpha-methylbenzylamine did not significantly bind to the transporter. Competitive inhibition studies with the cell line used to create the chromatographic column demonstrated that, for the enantiomers of propranolol, the ratio of the chromatographically determined K(d) values [K(d (+)-(R)-propranolol)/K(d (-)-(S)-propranolol) = 2.98] reflected an enantioselective difference in the functional activity of the two enantiomers [IC(50 (+)-(R)-propranolol)/IC(50 (-)-(S)-propranolol) = 2.75]. The chromatographically determined K(d) values were used to construct an initial pharmacophore which contains a hydrogen bond donating site that appears to be responsible for the observed enantioselectivity.  相似文献   

2.
Membranes from stably transfected cell lines that express two point mutations of the human organic cation transporter-1 (hOCT1), R488 M and G465R, have been immobilized on the immobilized artificial membrane (IAM) liquid chromatographic stationary phase to form two cellular membrane affinity chromatography (CMAC) columns, CMAC(hOCT1G465R) and CMAC(hOCT1R488M). Columns were created using both stationary phases, and frontal displacement chromatography experiments were conducted using [3H] MMP+ (1-methyl-4-phenylpyridinium) as the marker ligand and various displacers, including the single enantiomers of verapamil, fenoterol, and isoproterenol. The chromatographic data obtained were used to refine a previously developed pharmacophore for hOCT1.  相似文献   

3.
A liquid chromatographic stationary phase containing immobilized membranes from cells expressing the P2Y-like receptor GPR17 is described. Cellular membranes from 1321N1 cells transiently transfected with GPR17 vector [GPR17(+)] and from the same cell line transfected with the corresponding empty vector [GPR17(−)] were entrapped on immobilized artificial membrane (IAM) support and packed into 6.6-mm-i.d. glass columns to create GPR17(+)-IAM and GPR17(−)-IAM stationary phases. Frontal chromatography experiments on both GPR17(+)-IAM and GPR17(−)-IAM demonstrated the presence of a specific interaction with GPR17 only in the former that was maximized by increasing the membrane/IAM ratio. GPR17(+)-IAM was used in frontal affinity chromatography experiments to calculate the dissociation constants (Kd) of three ligands—the antagonist cangrelor (formerly AR-C69931MX, a P2Y12/P2Y13 antagonist), MRS2179 (a P2Y1 receptor antagonist), and the agonist UDP—all of which have been reported to also interact with GPR17. Immobilized GPR17 retained its ability to specifically bind the three analytes, as demonstrated by the agreement of the calculated Kd values with previously reported data. Preliminary ranking experiments suggest the application of GPR17(+)-IAM in ranking affinity studies for the selection of new potential candidates.  相似文献   

4.
This paper reports the development of liquid chromatographic columns containing immobilized organic anion transporters (hOAT1 and hOAT2). Cellular membrane fragments from MDCK cells expressing hOAT1 and S2 cells expressing hOAT2 were immobilized on the surface of the immobilized artificial membrane (IAM) liquid chromatographic stationary phase. The resulting stationary phases were characterized by frontal affinity chromatography, using the marker ligand [3H]-adefovir for the hOAT1 and [14C]-p-aminohippurate for the hOAT2 in the presence of multiple displacers. The determined binding affinities (Kd) for eight OAT1 ligands and eight OAT2 ligands were correlated with literature values and a statistically significant correlation was obtained for both the hOAT1 and hOAT2 columns: r2=0.688 (p<0.05) and r2=0.9967 (p<0.0001), respectively. The results indicate that the OAT1 and OAT2 have been successfully immobilized with retention of their binding activity. The use of these columns to identify ligands to the respective transporters will be presented.  相似文献   

5.
Cellular membranes from a cell line expressing P-glycoprotein (Pgp(+)) and from a cell line that does not express Pgp (Pgp(-)) were immobilized on the surface of glass capillaries (25 cm x 100 microm i.d.) by non-covalent interactions using the avidin-biotin coupling system to create two open tubular columns, Pgp(+)-OT and Pgp(-)-OT. Frontal displacement chromatography on the Pgp(+)-OT demonstrated that the immobilized Pgp retained its ability to specifically bind the known Pgp substrates vinblastin and ketoconazole. The calculated affinities, expressed as K(d), for vinblastin and ketoconazole were 97 nM and 12.1 microM, which were comparable with previously reported K(d) values of 37 nM and 8.6 microM, respectively. The results confirm that the Pgp(+)-OT can be used to quantitatively estimate binding affinities for the Pgp. Frontal displacement chromatography on the Pgp(-)-OT demonstrated that the immobilized membranes retained the ability to bind some Pgp substrates, but that the binding was not due to specific binding to Pgp. A cohort of compounds containing high affinity Pgp substrates (vinblastin, prazosin) and moderate-low affinity Pgp substrates (doxorubicin, verapamil, ketoconazole) and a non-substrate (nicotine) were chromatographed on the Pgp(+)-OT and Pgp(-)-OT using fast frontal analysis and mass spectrometric detection. The results demonstrated that when the retention on the Pgp(+)-OT was corrected by subtraction of the retention on the Pgp(-)-OT, the test compounds could be accurately sorted into high, moderate-low and non-substrate categories. The data from the study indicates that a single 30-min parallel chromatographic experiment can be used to rank a compound based upon its relative affinity for the immobilized Pgp.  相似文献   

6.
The mechanisms whereby 1-methyl-4-phenylpyridinium (MPP(+)) mediates cell death and Parkinsonism are still unclear. We have shown that dopamine transporter (DAT) is required for MPP(+)-mediated cytotoxicity in HEK-293 cells stably transfected with human DAT. Furthermore, MPP(+) produced a concentration- and time-dependent reduction in the uptake of [3H]dopamine. We observed a significant decrease in [3H]WIN 35428 binding in the intact cells with MPP(+). The saturation analysis of the [3H]WIN 35428 binding obtained from total membrane fractions revealed a decrease in the transporter density (B(max)) with an increase in the dissociation equilibrium constant (K(d)) after MPP(+) treatment. Furthermore, biotinylation assays confirmed that MPP(+) reduced both plasma membrane and intracellular DAT immunoreactivity. Taken together, these findings suggest that the reduction in cell surface DAT protein expression in response to MPP(+) may be a contributory factor in the down-regulation of DAT function while enhanced lysosomal degradation of DAT may signal events leading to cellular toxicity.  相似文献   

7.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

8.
Liquid chromatography columns containing stationary phases based upon immobilized nicotinic acetylcholine receptors (nAChRs) were used to screen a series of conformationally constrained nicotine and anabasine derivatives for agonist activity. The alpha3beta4 nAChR and alpha4beta2 nAChR subtypes were used to prepare the chromatographic columns and [(3)H] epibatidine dihydrochloride ([(3)H] EB) was used as the marker ligand. Single displacement experiments were conducted with the test ligands and with nicotine and carbachol. Nicotine was used as an internal control for compounds with agonist activity and carbachol was used as an internal control for compounds with very weak agonistic activity (K(d) > 4700 nM for alpha3beta4). The displacement of [(3)H] EB by each of the test compounds and internal controls was calculated and expressed as Deltaml. Functional studies were then conducted using a stably transfected cell line that expresses the alpha3beta4 nAChR and EC(50) values were determined for the test compounds and the internal controls. A comparison of the Deltaml and EC(50) values indicated that 9/11 compounds had been correctly identified as agonists or non-agonists of the alpha3beta4 nAChR. A similar comparison could not be made for the alpha4beta2 nAChR, since the intact cell line was not available for testing. The results of the study suggest that the immobilized nAChR columns can be used for the rapid on-line screening of compounds for their relative affinities for the immobilized receptor and as an initial determination of qualitative functional activities.  相似文献   

9.
This review addresses the synthesis and characterization of two different types of receptor-based liquid chromatographic supports, one based upon a trans-membrane ligand gated ion channel receptor (the nicotinic acetylcholine receptor) and the other a soluble nuclear receptor (the estrogen receptor). In addition, studies with the P-glycoprotein transporter are also reported. The nicotinic receptor was immobilized via hydrophobic insertion into the interstitial spaces of an immobilized artificial membrane (IAM) stationary phase. the estrogen receptor was tethered to a hydrophilic stationary phase and the membranes containing the Pgp transporter were coated on the surface of the IAM stationary phase. The stationary phases were characterized using known ligands and substrates for the respective non-immobilized proteins. The results from zonal and frontal chromatographic experiments demonstrated that the stationary phases could be used to determine binding affinities (expressed as dissociation constants, Kd,'s) and to resolve mixtures of ligands according to their relative affinities. In addition. competitive ligand binding studies on the P-glycoprotein-based stationary phase have established that this phase can be used to identify and characterize competitive displacement and allosteric interactions. These studies demonstrate that immobilized-receptor phases can be used for on-line pharmacological studies and as rapid screens for the isolation and identification of lead drug candidates from complex biological or chemical mixtures.  相似文献   

10.
Nicotinic acetylcholine receptor (nAChR) α3-subunits, β4-subunits, α3/β4-subunit combination and α4/β2-subunit combination were immobilized on chromatographic stationary phases and the binding affinities of the different nAChR subtypes were chromatographically evaluated. The observed relative binding affinities of epibatidine were α4/β2>α3/β4 and epibatidine did not bind at α3-subunits and β4-subunits. No significant difference in binding affinities was observed on the α4/β2 nAChRs immobilized in immobilized artificial membrane (IAM) particles and those sterically immobilized on Superdex 200 beads. The effects of mobile phase pH and ionic strength on the binding affinities of the α3/β4 nAChRs support were also investigated. The results are consistent with the proposed ligand–nAChR binding model in which a cationic center exists at the binding site.  相似文献   

11.
The significance of conserved cysteines in the human organic cation transporter 2 (hOCT2), namely the six cysteines in the long extracellular loop (loop cysteines) and C474 in transmembrane helix 11, was examined. Uptake of tetraethylammonium (TEA) and 1-methyl-4-phenypyridinium (MPP) into Chinese hamster ovary cells was stimulated >20-fold by hOCT2 expression. Both cell surface expression and transport activity were reduced considerably following mutation of individual loop cysteines (C51, C63, C89, C103, and C143), and the C89 and C103 mutants had reduced Michaelis constants (K(t)) for MPP. The loop cysteines were refractory to interaction with thiol-reactive biotinylation reagents, except after pretreatment of intact cells with dithiothreitol or following cell membrane solubilization. Reduction of disulfide bridge(s) did not affect transport, but labeling the resulting free thiols with maleimide-PEO(2)-biotin did. Mutation of C474 to an alanine or phenylalanine did not affect the K(t) value for MPP. In contrast, the K(t) value associated with TEA transport was reduced sevenfold in the C474A mutant, and the C474F mutant failed to transport TEA. This study shows that some but not all of the six extracellular loop cysteines exist within disulfide bridge(s). Each loop cysteine is important for plasma membrane targeting, and their mutation can influence substrate binding. The effect of C474 mutation on TEA transport suggests that it contributes to a TEA binding surface. Given that TEA and MPP are competitive inhibitors, the differential effects of C474 modification on TEA and MPP binding suggest that the binding surfaces for each are distinct, but overlapping in area.  相似文献   

12.
We examined the properties of voltage-dependent Ca(2+) channels (VDCCs) mediating 1-methyl-4-phenylpyridinium (MPP(+))-evoked [3H]DA release from rat striatal slices. In some cases, the Ca(2+)-independent efflux of neurotransmitters is mediated by the high-affinity neurotransmitter-uptake systems. To determine whether such a mechanism might be involved in MPP(+)-evoked [3H]DA release. MPP(+) (1,10 and 100 microM) evoked the release of [3H]DA from rat striatal slices in a concentration-dependent manner. In the absence of Ca(2+), MPP(+) (10 and 100 microM)-evoked [3H]DA release was significantly decreased to approximately 50% of control (a physiological concentration of Ca(2+)). In the presence of Ca(2+), nomifensine (0.1,1 and 10 microM) dose-dependently and significantly inhibited the MPP(+)-evoked release of [3H]DA. Nomifensine (1 and 10 microM) also dose-dependently and significantly inhibited the MPP(+)-evoked release of [3H]DA under Ca(2+)-free conditions. MPP(+)-evoked [3H]DA release was partly inhibited by nicardipine (1 and 10 microM), an L-type Ca(2+) channel blocker. On the other hand, the N-type Ca(2+) channel blocker omega-conotoxin-GVIA (omega-CTx-GVIA) (1 and 3 microM) did not affect this release. omega-agatoxin-IVA (omega-Aga-IVA) at low concentrations (0.1 microM), which are sufficient to block P-type Ca(2+) channels alone, also had no effect. On the other hand, MPP(+)-evoked [3H]DA release was significantly decreased by high concentrations of omega-Aga-IVA (0.3 microM) that would inhibit Q-type Ca(2+) channels. In addition, application of the Q-type Ca(2+) channel blocker omega-conotoxin-MVIIC (omega-CTx-MVIIC) (0.3 and 1 microM) also significantly inhibited MPP(+)-evoked [3H]DA release. These results suggest that MPP(+)-evoked [3H]DA release from rat striatal slices is largely mediated by Q-type Ca(2+) channels, and the Ca(2+)-independent component is mediated by reversal of the DA transport system.  相似文献   

13.
Membranes from rat telencephalon contain a single class of strychnine-insensitive glycine sites. That these sites are associated with N-methyl-D-aspartic acid (NMDA) receptors is indicated by the observations that [3H]glycine binding is selectively modulated by NMDA receptor ligands and, conversely, that several amino acids interacting with the glycine sites increase [3H]N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding to the phencyclidine site of the NMDA receptor. The endogenous compound kynurenate and several related quinoline and quinoxaline derivatives inhibit glycine binding with affinities that are much higher than their affinities for glutamate binding sites. In contrast to glycine, kynurenate-type compounds inhibit [3H]TCP binding and thus are suggested to form a novel class of antagonists of the NMDA receptor acting through the glycine site. These results suggest the existence of a dual and opposite modulation of NMDA receptors by endogenous ligands.  相似文献   

14.
The human organic cation transporter type 1 (hOCT1) is an important transport system for small organic cations in the liver. Organic cation transporters are regulated by different signaling pathways, but the regulation of hOCT1 has not yet been studied. In this work, we have for the first time investigated the regulation of hOCT1. hOCT1 was expressed in Chinese hamster ovary cells (CHO-hOCT1) and in human embryonic kidney cells (HEK293-hOCT1). Its activity was monitored using microfluorimetry with the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP(+)) as substrate. hOCT1 expressed in CHO-cells was inhibited by protein kinase A (PKA) activation (1 microM forskolin, -58 +/- 6%, n = 12), calmodulin inhibition (0.1 microM calmidazolium, -68 +/- 3%, n = 6; 10 microM ophiobolin A, -48 +/- 10%, n = 7), calmodulin-dependent kinase II inhibition (1 microM KN62, -78 +/- 4%, n = 12), and inhibition of p56(lck) tyrosine kinase (10 microM aminogenistein, -35 +/- 7%, n = 12). The apparent affinities for TEA(+) were lower in CHO-hOCT1 than in HEK293-hOCT1, while those for TPA(+) and quinine were almost identical; the rank order of EC(50) values (TPA(+) > quinine > TEA(+)) was independent of the expression system. EC(50) values for TEA(+) in CHO-hOCT1 or HEK293-hOCT1 were increased under calmidazolium incubation (6.3 and 1.4 mM, respectively). hOCT1 was inhibited by PKA and endogenously activated by calmodulin, calmodulin-dependent kinase II, and p56(lck) tyrosine kinase. Regulation pathways were the same in the two expression systems. Since apparent substrate affinities depend on activity of regulatory pathways, the expression system plays a role in determining the substrate affinities.  相似文献   

15.
Endogenous or exogenous beta-carboline (betaC) derivatives structurally related to the selective dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenylpyridinium (MPP(+)) may contribute to dopaminergic neurodegeneration in Parkinson's disease (PD). We addressed the importance of the dopamine transporter (DAT) for selective dopaminergic toxicity by testing the differential cytotoxicity and cellular uptake of 12 betaCs in human embryonic kidney HEK-293 cells ectopically expressing the DAT gene. Cell death was measured using [4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and trypan blue exclusion assays, and uptake by a fluorescence-based uptake assay. All betaCs and MPP(+) showed general cytotoxicity in parental HEK-293 cells after 72 h with half-maximal toxic concentrations (TC(50) values) in the upper micromolar range. Besides MPP(+), only 2[N]-methylated compounds showed enhanced cytotoxicity in DAT expressing HEK-293 cells with 1.3- to 4.5-fold reduction of TC(50) values compared with parental cell line. The rank order of selectivity was: MPP(+) > 2[N],9[N]-dimethyl-harminium > 2[N]-methyl-harminium > 2[N],9[N]-dimethyl-harmanium = 2[N]-methyl-norharmanium > 2[N]-methyl-harmanium > 2[N],9[N]-dimethyl-norharminium. Consistently, only 2[N]-methylated betaCs were transported into the cell through the DAT with up to five times greater K(m) and 12-220 times smaller V(max) values compared with dopamine and MPP(+). There was a weak relation of DAT-mediated selectivity with the affinity of betaCs at the DAT (K(m)), but not with V(max). Our data suggest that DAT-mediated cellular uptake of 2[N]-methylated betaCs represents a potential mechanism for selective toxicity towards dopaminergic neurons and may be relevant for the pathogenesis of Parkinson's disease.  相似文献   

16.
17.
The chiral recognition mechanisms responsible for the enantioselective binding on the alpha3beta4 nicotinic acetylcholine receptor (alpha3 beta4 nAChR) and human organic cation transporter 1 (hOCT1) have been reviewed. The results indicate that chiral recognition on the alpha3beta4 nAChR is a process involving initial tethering of dextromethorphan and levomethorphan at hydrophobic pockets within the central lumen followed by hydrogen bonding interactions favoring dextromethorphan. The second step is the defining enantioselective step. Studies with the hOCT1 indentified four binding sites within the transporter that participated in chiral recognition. Each of the enantiomers of the compounds used in the study interacted with three of these sites, while (R)-verapamil interacted with all four. Chiral recognition arose from the conformational adjustments required to produce optimum interactions. With respect to the prevailing interaction-based models, the data suggest that chiral recognition is a dynamic process and that the static point-based models should be amended to reflect this.  相似文献   

18.
(-)-[3H]Desmethoxyverapamil ((-)-DMV) binds saturably to homogenates of the osteoblast-like cell lines UMR 106 and ROS 17/2.8 with KD values of 45 and 61 nM and Bmax values of 6.0 and 5 pmol/mg protein, respectively. Binding is stereoselective with (-)-DMV 8-10 times more potent than (+)-DMV. None of the dihydropyridine or benzothiazepine Ca2+ antagonists examined affect (-)-[3H]DMV binding. Monovalent cations such as Li+, Na+, and K+ inhibit (-)[3H]DMV binding in the 100-400 mM range. Divalent cations such as Ba2+, Sr2+, Ca2+, and Mg2+ are effective binding inhibitors in the 2-5 mM range. ROS 17/2.8 cells express a channel on the apical plasma membrane which conducts Ba2+ and Ca2+. With 110 mM BaCl2 or CaCl2 as charge carriers the single channel conductance is 3-5 picosiemens. In cell-excised patches the channel selects for Ba2+ over Na+ 3.3:1. In the absence of divalent ions the channel conducts Na+ ions with a single channel conductance of 13 picosiemens. This Na+ conductance decreases with physiological levels of Ca2+. The channel appears related to the (-)-[3H]DMV binding site, since its conductance is blocked by verapamil in a dose-dependent manner. Moreover, DMV blocks the channel stereoselectively with relative potencies of the isomers corresponding to their affinities for the binding site. The dihydropyridine drugs BAY K 8644 or (+)-202-791 do not affect channel opening. These binding and biophysical data indicate that osteoblast cells have a phenylalkylamine receptor associated with a Ca2+ channel.  相似文献   

19.
The human dopamine transporter (hDAT) contains an endogenous high affinity Zn2+ binding site with three coordinating residues on its extracellular face (His193, His375, and Glu396). Upon binding to this site, Zn2+ causes inhibition of [3H]1-methyl-4-phenylpyridinium ([3H]MPP+) uptake. We investigated the effect of Zn2+ on outward transport by superfusing hDAT-expressing HEK-293 cells preloaded with [3H]MPP+. Although Zn2+ inhibited uptake, Zn2+ facilitated [3H]MPP+ release induced by amphetamine, MPP+, or K+-induced depolarization specifically at hDAT but not at the human serotonin and the norepinephrine transporter (hNET). Mutation of the Zn2+ coordinating residue His(193) to Lys (the corresponding residue in hNET) eliminated the effect of Zn2+ on efflux. Conversely, the reciprocal mutation (K189H) conferred Zn2+ sensitivity to hNET. The intracellular [3H]MPP+ concentration was varied to generate saturation isotherms; these showed that Zn2+ increased V(max) for efflux (rather than K(M-Efflux-intracellular)). Thus, blockage of inward transport by Zn2+ is not due to a simple inhibition of the transporter turnover rate. The observations provide evidence against the model of facilitated exchange-diffusion and support the concept that inward and outward transport represent discrete operational modes of the transporter. In addition, they indicate a physiological role of Zn2+, because Zn2+ also facilitated transport reversal of DAT in rat striatal slices.  相似文献   

20.
U-78518F, a 21-aminosteroid from the novel family of lipid peroxidation inhibitors (lazaroids), increased survival of dopamine (DA) neurons in mesencephalic cell cultures incubated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Protection against DA neuron death occurred with increasing concentrations of U-78518F up to 30 microM. Non-specific toxicity produced with higher concentrations of MPP+ was not affected by the lazaroid. U-78518F inhibited cellular uptake of [3H]MPP+ and [3H]DA, but not that of gamma-[3H]aminobutyric acid. In human striatal membrane preparations, U-78518F competed with [3H]mazindol for binding to the DA transporter, with a calculated Ki value of 10 microM. Two of four lazaroids tested inhibited [3H]DA uptake in the cell culture system. The protective effects of 21-aminosteroids in MPP(+)-induced neurotoxicity are, in part, a function of the interaction of these agents with the DA transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号