首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic dynein is the multisubunit protein complex responsible for many microtubule-based intracellular movements. Its cargo binding domain consists of dimers of five subunits: the intermediate chains, the light intermediate chains, and the Tctex1, Roadblock, and LC8 light chains. The intermediate chains have a key role in the dynein complex. They bind the three light chains and the heavy chains, which contain the motor domains, but little is known about how the two intermediate chains interact. There are six intermediate chain isoforms, and it has been hypothesized that different isoforms may regulate specific dynein functions. However, there are little data on the potential combinations of the intermediate chain isoforms in the dynein complexes. We used co-immunoprecipitation analyses to demonstrate that all combinations of homo- and heterodimers of the six intermediate chains are possible. Therefore the formation of dynein complexes with different combinations of isoforms is not limited by interaction between the various intermediate chains. We further sought to identify the domain necessary for the dimerization of the intermediate chains. Analysis of a series of truncation and deletion mutants showed that a 61-amino-acid region is necessary for dimerization of the intermediate chain. This region does not include the N-terminal coiled-coil, the C-terminal WD repeat domain, or the three different binding sites for the Tctex1, LC8, and Roadblock light chains. Analytical gel filtration and covalent cross-linking of purified recombinant polypeptides further demonstrated that the intermediate chains can dimerize in vitro in the absence of the light chains.  相似文献   

2.
Cytoplasmic dynein is a large multisubunit motor protein that moves various cargoes toward the minus ends of microtubules. In addition to the previously identified heavy, intermediate, and light intermediate chains, it has recently been recognized that cytoplasmic dynein also has several light chain subunits with apparent molecular weights between 8-20 kDa. To systematically identify the light chains of purified rat brain cytoplasmic dynein, peptide sequences were obtained from each light chain band resolved by gel electrophoresis. Both members of the tctex1 light chain family, tctex1 and rp3, were identified in a single band. Only one member of the roadblock family, roadblock-2, was found. Two members of the LC8 family were resolved as separate bands, the previously identified LC8 subunit, and a second novel cytoplasmic dynein family member, LC8b. The tissue distribution of these two dynein LC8 subunits differed, although LC8b was the major family member in brain. Database searches found that both LC8a and LC8b were also present in several mammalian species, and a third mammalian LC8 sequence, LC8c was found in the human database. The amino acid sequences of both LC8a and LC8b were completely conserved in mammals. LC8a and LC8b differ in only six of the 89 amino acids. The amino acid differences between LC8a and LC8b were located near the N-terminus of the molecules, and most were in the outward facing alpha-helices of the LC8 dimer. When the mammalian LC8a sequence was compared to the LC8 sequences found in six other animal species including Xenopus and Drosophila, there was, on average, 94% sequence identity. More variation was found in LC8 sequences obtained from plants, fungi, and parasites. LC8c differed from the other two human LC8 sequences in that it has amino acid substitutions in the intermediate chain binding domain at the C-terminal of the molecule. The position of amino acid substitutions of the three mammalian LC8 family members is consistent with the hypothesis that they bind to different proteins.  相似文献   

3.
Dynein light chains are thought to increase binding efficiency of dynein intermediate chain to both dynein heavy chain and dynactin, but their exact role is not clear. Isothermal titration calorimetry and x-ray crystallography reported herein indicate that multivalency effects underlie efficient dynein assembly and regulation. For a ternary complex of a 60-amino acid segment of dynein intermediate chain (IC) bound to two homodimeric dynein light chains Tctex1 and LC8, there is a 50-fold affinity enhancement for the second light chain binding. For a designed IC construct containing two LC8 sites, observed the 1000-fold enhancement reflects a remarkably pure entropic chelate effect of a magnitude commensurate with theoretical predictions. The lower enhancement in wild-type IC is attributed to unfavorable free energy changes associated with incremental interactions of IC with Tctex1. Our results show assembled dynein IC as an elongated, flexible polybivalent duplex, and suggest that polybivalency is an important general mechanism for constructing stable yet reversible and functionally versatile complexes.  相似文献   

4.
The Tctex1/Tctex2 family of dynein light chains associates with the intermediate chains at the base of the soluble dynein particle. These components are essential for dynein assembly and participate in specific motor-cargo interactions. To further address the role of these light chains in dynein activity, the structural and biochemical properties of several members of this polypeptide class were examined. Gel filtration chromatography and native gel electrophoresis indicate that recombinant Chlamydomonas flagellar Tctex1 exists as a dimer in solution. Furthermore, yeast two-hybrid analysis suggests that this association also occurs in vivo. In contrast, both murine and Chlamydomonas Tctex2 are monomeric. To investigate protein-protein interactions involving these light chains, outer arm dynein from Chlamydomonas flagella was cross-linked using dimethylpimelimidate. Immunoblot analysis of the resulting products revealed the interaction of LC2 (Tctex2) with LC6, which is closely related to the highly conserved LC8 protein found in many enzyme systems, including dynein. Northern dot blot analysis demonstrated that Tctex1/Tctex2 family light chains are differentially expressed both in a tissue-specific and developmentally regulated manner in humans. These data provide further support for the existence of functionally distinct populations of cytoplasmic dynein with differing light chain content.  相似文献   

5.
Using proteomic and immunochemical techniques, we have identified the light and intermediate chains (IC) of outer arm dynein from sperm axonemes of the ascidian Ciona intestinalis. Ciona outer arm dynein contains six light chains (LC) including a leucine-rich repeat protein, Tctex1- and Tctex2-related proteins, a protein similar to Drosophila roadblock and two components related to Chlamydomonas LC8. No LC with thioredoxin domains is included in Ciona outer arm dynein. Among the five ICs in Ciona, three are orthologs of those in sea urchin dynein: two are WD-repeat proteins and the third one, unique to metazoan sperm flagella, contains both thioredoxin and nucleoside diphosphate kinase modules. The remaining two Ciona ICs have extensive coiled coil structure and show sequence similarity to outer arm dynein docking complex protein 2 (DC2) that was first identified in Chlamydomonas flagella. We recently identified a third DC2-like protein with coiled coil structure, Ci-Axp66.0 that is also associated in substoichiometric amounts with Ciona outer arm dynein. In addition, Oda5p, a component of an additional complex required for assembly of outer arm dynein in Chlamydomonas flagella, also groups with this family of DC2-like proteins. Thus, the assembly of outer arm dynein onto doublet microtubules involves multiple coiled-coil proteins related to DC2.  相似文献   

6.
Tctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1. We have now identified a second Tctex1-related protein (here termed LC9) in Chlamydomonas. LC9 copurifies with outer arm dynein in sucrose density gradients and is missing only in those strains completely lacking this motor. Zero-length cross-linking of purified outer arm dynein indicates that LC9 interacts directly with both the IC1 and IC2 intermediate chains. Immunoblot analysis revealed that LC2, LC6, and LC9 are missing in an IC2 mutant strain (oda6-r88) that can assemble outer arms but exhibits significantly reduced flagellar beat frequency. This defect is unlikely to be due to lack of LC6, because an LC6 null mutant (oda13) exhibits only a minor swimming abnormality. Using an LC2 null mutant (oda12-1), we find that although some outer arm dynein components assemble in the absence of LC2, they are nonfunctional. In contrast, dyneins from oda6-r88, which also lack LC2, retain some activity. Furthermore, we observed a synthetic assembly defect in an oda6-r88 oda12-1 double mutant. These data suggest that LC2, LC6, and LC9 have different roles in outer arm assembly and are required for wild-type motor function in the Chlamydomonas flagellum.  相似文献   

7.
8.
The cytoplasmic dynein 1 cargo binding domain is formed by five subunits including the intermediate chain and the DYNLT, DYNLL, and DYNLRB light chain families. Six isoforms of the intermediate chain and two isoforms of each of the light chain families have been identified in mammals. There is evidence that different subunit isoforms are involved in regulating dynein function, in particular linking dynein to different cargoes. However, it is unclear how the subunit isoforms are assembled or if there is any specificity to their interactions. Co-immunoprecipitation using DYNLT-specific antibodies reveals that dynein complexes with DYNLT light chains also contain the DYNLL and DYNLRB light chains. The DYNLT light chains, but not DYNLL light chains, associate exclusively with the dynein complex. Yeast two-hybrid and co-immunoprecipitation assays demonstrate that both members of the DYNLT family are capable of forming homodimers and heterodimers. In addition, both homodimers of the DYNLT family bind all six intermediate chain isoforms. However, DYNLT heterodimers do not bind to the intermediate chain. Thus, whereas all combinations of DYNLT light chain dimers can be made, not all of the possible combinations of the isoforms are utilized during the assembly of the dynein complex.  相似文献   

9.
When the motility of sperm is activated, only one light chain of flagellar outer arm dynein is phosphorylated in many organisms. We show here that the light chain to be phosphorylated was shown to be light chain 2 (LC2) in rainbow trout and chum salmon sperm and LC1 in sea urchin sperm. Molecular analyses of the phosphorylated light chains from sperm flagella of the salmonid fishes and sea urchin revealed that the light chains are homologs of the mouse t complex-encoded protein Tctex2, which is one of the putative t complex distorters. These results suggest that mouse Tctex2 might also be a light chain of flagellar outer arm dynein and that the abortive phosphorylation of Tctex2/outer arm dynein light chain might be related to the less progressive movement of sperm.  相似文献   

10.
Dynein light chains are bivalent dimers that bind two copies of dynein intermediate chain IC to form a cargo attachment subcomplex. The interaction of light chain LC8 with the natively disordered N-terminal domain of IC induces helix formation at distant IC sites in or near a region predicted to form a coiled-coil. This fostered the hypothesis that LC8 binding promotes IC self-association to form a coiled-coil or other interchain helical structure. However, recent studies show that the predicted coiled-coil sequence partially overlaps the light chain LC7 recognition sequence on IC, raising questions about the apparently contradictory effects of LC8 and LC7. Here, we use NMR and fluorescence quenching to localize IC self-association to residues within the predicted coiled-coil that also correspond to helix 1 of the LC7 recognition sequence. LC8 binding promotes IC self-association of helix 1 from each of two IC chains, whereas LC7 binding reverses self-association by incorporating the same residues into two symmetrical, but distant, helices of the LC7-IC complex. Isothermal titration experiments confirm the distinction of LC8 enhancement of IC self-association and LC7 binding effects. When all three light chains are bound, IC self-association is shifted to another region. Such flexibility in association modes may function in maintaining a stable and versatile light chain-intermediate chain assembly under changing cellular conditions.  相似文献   

11.
Cytoplasmic dynein is a molecular motor complex consisting of four major classes of polypeptide: the catalytic heavy chains (HC), intermediate chains (IC), light intermediate chains (LIC), and light chains (LC). Previous studies have reported that the ICs bind near the N terminus of the HCs, which is thought to correspond to the base of the dynein complex. In this study, we co-overexpressed cytoplasmic dynein subunits in COS-7 cells to map HC binding sites for the ICs and LICs, as well as HC dimerization. We have found that the LICs bind directly to the N terminus of the HC, adjacent to and overlapping with the IC binding site, consistent with a role for the LICs in cargo binding. Mutation of the LIC P-loop had no detectable effect on HC binding. We detected no direct interaction between the ICs and LICs. Using triple overexpression of HC, IC and LIC, we found that both IC and LIC are present in the same complexes, a result verified by anti-IC immunoprecipitation of endogenous complexes and immunoblotting. Our results indicate that the LICs and ICs must be located on independent surfaces of cytoplasmic dynein to allow each to interact with other proteins without steric interference.  相似文献   

12.
The intermediate chain of dynein forms a tight subcomplex with dimeric light chains LC8 and Tctex-1, and together they constitute the cargo attachment complex. There is considerable interest in identifying the role of these light chains in the assembly of the two copies of the intermediate chain. The N-terminal domain of the intermediate chain, IC1-289, contains the binding sites for the light chains, and is a highly disordered monomer but gains helical structure upon binding to light chains LC8 and Tctex-1. To provide insights into the structural and dynamic changes that occur in the intermediate chain upon light chains binding, we have used NMR spectroscopy to compare the properties of two distinct sub-domains of IC1-289: IC84-143 which is the light chains binding domain, and IC198-237, which contains a predicted coiled coil necessary for the increase in ordered structure upon light chain binding. Neither construct has stable secondary structure when probed by circular dichroism and amide chemical shift dispersion. Specific residues of IC84-143 involved in binding to the light chains were identified by their increase in resonance line broadening and the corresponding large intensity reduction in 1H-15N HSQC spectra. Interestingly, IC84-143 shows no sign of structure formation after binding to either LC8 or Tctex-1 or to both. IC198-237, on the other hand, contains a population of a nascent helix at low temperature as identified by heteronuclear NMR relaxation measurements, secondary chemical shifts, and sequential amide-amide connectivities. These data are consistent with a model for light chain binding coupled to intermediate chain dimerization through forming a coiled coil distant from the binding site.  相似文献   

13.
Tctex1 is a light chain found in both cytoplasmic and flagellar dyneins and is involved in many fundamental cellular activities, including rhodopsin transport within photoreceptors, and may function in the non-Mendelian transmission of t haplotypes in mice. Here, we present the NMR solution structure for the Tctex1 dimer from Chlamydomonas axonemal inner dynein arm I1. Structural comparisons reveal a strong similarity with the LC8 dynein light chain dimer, including formation of a strand-switched beta sheet interface. Analysis of the Tctex1 structure enables the dynein intermediate chain binding site to be identified and suggests a mechanism by which cargo proteins might be attached to this microtubule motor complex. Comparison with the alternate dynein light chain rp3 reveals how the specificity of dynein-cargo interactions mediated by these dynein components is achieved. In addition, this structure provides insight into the consequences of the mutations found in the t haplotype forms of this protein.  相似文献   

14.
15.
Tctex1 and Tctex2 were originally described in mice as putative distorters/sterility factors involved in the non-Mendelian transmission of t haplotypes. Subsequently, these proteins were found to be light chains of both cytoplasmic and axonemal dyneins. We have now identified a novel Tctex2-related protein (Tctex2b) within the Chlamydomonas flagellum. Tctex2b copurifies with inner arm I1 after both sucrose gradient centrifugation and anion exchange chromatography. Unlike the Tctex2 homologue within the outer dynein arm, analysis of a Tctex2b-null strain indicates that this protein is not essential for assembly of inner arm I1. However, a lack of Tctex2b results in an unstable dynein particle that disassembles after high salt extraction from the axoneme. Cells lacking Tctex2b swim more slowly than wild type and exhibit a reduced flagellar beat frequency. Furthermore, using a microtubule sliding assay we observed that dynein motor function is reduced in vitro. These data indicate that Tctex2b is required for the stability of inner dynein arm I1 and wild-type axonemal dynein function.  相似文献   

16.
km23 (96 residues, 11 kDa) is the mammalian ortholog of Drosophila roadblock, the founding member of LC7/robl/km23 class of dynein light chains. km23 has been shown to be serine-phosphorylated following TGFbeta receptor activation and to bind the dynein intermediate chain in response to such phosphorylation. Here, we report the three-dimensional solution structure of km23, which is shown to be that of a homodimer, similar to that observed for the heterodimeric complex formed between p14 and MP1, two distantly related members of the MglB/robl superfamily, but distinct from the LC8 and Tctex-1 classes of dynein light chains, which also adopt homodimeric structures. The conserved surface residues of km23, including three serine residues, are located predominantly on a single face of the molecule. Adjacent to this face is a large cleft formed by the incomplete overlap of loops from opposite monomers. As shown by NMR relaxation data collected at two fields, several cleft residues are flexible on the ns-ps and ms-mus timescales. Based on these observations, we propose that the patch of conserved residues on the central face of the molecule corresponds to the site at which km23 binds the dynein intermediate chain and that the flexible cleft formed between the overlap of loops from the two monomers corresponds to the site at which km23 binds other partners, such as the TGFbeta type II receptor or Smad2.  相似文献   

17.
Roadblock/LC7 is a member of a class of dynein light chains involved in regulating the function of the dynein complex. We have determined the three-dimensional structure of isoform 1 of the mouse Roadblock/LC7 cytoplasmic dynein light chain (robl1_mouse) by NMR spectroscopy. In contrast to a previously reported NMR structure of the human homolog with 96% sequence identity (PDB 1TGQ), which showed the protein as a monomer, our results indicate clearly that robl1 exists as a symmetric homodimer. The two beta3-strands pair with each other and form a continuous ten-stranded beta-sheet. The 25-residue alpha2-helix from one subunit packs antiparallel to that of the other subunit on the face of the beta-sheet. Zipper-like hydrophobic contacts between the two helices serve to stabilize the dimer. Through an NMR titration experiment, we localized the site on robl1_mouse that interacts with the 40 residue peptide spanning residues 243 through 282 of IC74-1_rat. These results provide physical evidence for a symmetrical interaction between dimeric robl1 and the two molecules of IC74-1 in the dynein complex.  相似文献   

18.
The homodimeric light chains LC8 and Tctex-1 are integral parts of the microtubule motor cytoplasmic dynein, as they directly associate with dynein intermediate chain IC and various cellular cargoes. These light chains appear to regulate assembly of the dynein complex by binding to and promoting dimerization of IC. In addition, both LC8 and Tctex-1 play roles in signaling, apoptosis, and neuronal development that are independent of their function in dynein, but it is unclear how these various activities are modulated. Both light chains undergo specific phosphorylation, and here we present biochemical and NMR analyses of phosphomimetic mutants that indicate how phosphorylation may regulate light chain function. For both LC8 and Tctex-1, phosphorylation promotes dissociation from IC while retaining their binding activity with other non-dynein proteins. Although LC8 and Tctex-1 are homologs having a common fold, their reduced affinity for IC upon phosphorylation arises by different mechanisms. In the case of Tctex-1, phosphorylation directly masks the IC binding site at the dimer interface, whereas for LC8, phosphorylation dissociates the dimer and indirectly eliminates the binding site. This modulation of the monomer-dimer equilibrium by phosphorylation provides a novel mechanism for discrimination among LC8 binding partners.  相似文献   

19.
The small GTPase Rab6 is a key regulator in the retrograde transfer from endosomes via the Golgi to the ER. Three isoforms of Rab6 have been identified, the ubiquitously expressed Rab6A and Rab6A', and the brain specific Rab6B. Recent studies have shown that Rab6A' is the major isoform regulating this retrograde transport. Cytoplasmic dynein is the main motor protein complex for this transport. Dynein consists of two heavy chains, two intermediate chains, four light intermediate chains and several light chains, called roadblock/LC7 proteins or DYNLRB proteins. In mammalian cells two light chain isoforms have been identified, DYNLRB1 and DYNLRB2. We here show with yeast-two-hybrid, co-immunoprecipitation and pull down studies that DYNLRB1 specifically interacts with all three Rab6 isoforms and co-localises at the Golgi. This is the first example of a direct interaction between Rab6 isoforms and the dynein complex. Pull down experiments showed further preferred association of DYNLRB1 with GTP-bound Rab6A and interestingly GDP-bound Rab6A' and Rab6B. In addition DYNLRB1 was found in the Golgi apparatus where it co-localises with EYFP-Rab6 isoforms. DYNLRB is a putative modulator of the intrinsic GTPase activity of GTP-binding proteins. In vitro we were not able to reproduce this effect on Rab6 GTPase activity.  相似文献   

20.
Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain-binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号