首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a cost-benefit model, the leaf nitrogen concentrationand root : shoot ratio that maximize whole-plant relative growthrate are determined as a function of the above-ground environment(integrated daily photon flux density and the concentrationof carbon dioxide at the site of fixation within the leaf).The major advantage of this approach is that it determines theadaptive significance of leaf physiology by considering thefunctional integration of leaves and roots. The predicted responseto increasing daily photon flux densities is an increase inoptimal leaf N concentration (Nopt) and a concomitant increasein root: shoot ratio. Increased carbon dioxide concentrations,on the other hand, reduce Nopt and only slightly change root:shoot ratio. The observed increase in leaf nitrogen concentrationfound in plants growing at high altitudes (low CO2 partial pressure)is also predicted. Since these responses to light and CO2 maximizethe whole-plant relative growth rate, the observed adjustmentsthat plants make to light and carbon dioxide concentration appearto be adaptive. We show that the relationship between photosynthesis and leafnitrogen concentration is complex and depends on the light andCO2 levels at which photosynthesis is measured. The shape ofthis function is important in determining Nopt and the oppositeresponse of leaf nitrogen to light and carbon dioxide is shownto be the result of the different effects of light and CO2 onthe photosynthesis-leaf nitrogen curve. Plant growth, photosynthesis, leaf nitrogen, biomass allocation, optimization, carbon dioxide light  相似文献   

2.
Summary In order to more fully understand carbon dioxide dynamics in a soil-plant-atmosphere system, an in situ sampling technique has been developed to measure carbon dioxide concentration within the soil profile as well as in the atmosphere. Gas samples are automatically pumped in sequence from six porous collectors within the soil profile and five aboveground inlets through an infrared gas analyzer. Field measurements in a first year field, indicated that carbon dioxide concentrations reached a maximum value (1800 ppm) in the deepest soil sampling site (-180 cm). Temporal and spatial variations of carbon dioxide concentration were related to the development of root and vegetation structure as well as the position of the groundwater table.Supported, in part, by a grant from the Graduate Research Board. We acknowledge, with thanks, the competent assistance of Frank W. Schwartz.  相似文献   

3.
采用涡度相关法对2005年生长季内蒙古锡林河流域羊草(Leymus chinensis)草原净生态系统交换(Net ecosystem exchange, NEE)进行了观测。观测结果表明:作为生长季降雨量仅有126 mm的干旱年,锡林河流域羊草草原生态系统受到强烈的干旱胁迫,其净生态系统碳交换的日动态表现为具有两个吸收高峰,净吸收峰值出现在8∶00和18∶00左右。最大的CO2吸收率为-0.38 mg CO2·m-2·s-1,出现在6月底,与丰水年相比生态系统最大CO2吸收率下降了1倍。就整个生长季而言,不管是白天还是晚上2005年都表现为净CO2排放,整个生长季CO2净排放量为372.56 g CO2·m-2,是一个明显的CO2源。土壤含水量和土壤温度控制着生态系统CO2通量的大小,尤其是在白天,CO2通量和土壤含水量的变化呈现出显著的负相关关系,和土壤温度表现为正相关关系。  相似文献   

4.
The behaviour of a numerical model for the global carbon cycleis eluidated by a simple analytical model for the biosphere.In the period 1980—1990 the ocean is estimated to haveabsorbed 33% of the total CO2 emission to the atmosphere inthat same period. Net deforestation was responsible for 12—17%of this total emission rate, whereas the CO2-fertilization effectcaused a re-absorption of 20—25%. Aggregation of the above-ground biosphere into a single poolin the model caused an oversitmation of the CO2-fertilizationeffect. Also, the estimate of this rate increased when the fractionof carbon assumed to remain after the transformation of litterinto humus was increased, but the rate was little influencedby the model structure for soil organic carbon. A larger estimate for carbon uptake in the biosphere (Tans,Fung, and Takahashi, 1990) must be compensated by a reduceduptake in the ocean to arrive at a carbon balance. To do this,either the exchange rate between the upper mixed ocean layerand deep sea, or between ocean surface and atmosphere, shouldbe reduced. In addition, a good match to the observed time-courseof 14C carbon in the atmosphere must be preserved by the model.The 14C time-course did not remain well-matched if the atmosphere—oceansurface exchange was reduced, but it was hardly distrubed atall if the exchange rate with the deep sea was reduced. Key words: CO2-fertilization, global carbon cycle.  相似文献   

5.
The plankton multiplier is a positive feedback mechanism linkingthe greenhouse effect and biological pump (Woods.J.D., RoyalCommission on Environmental Pollution, 1990). As pollution increasesthe atmospheric concentration of carbon dioxide, the enhancedgreenhouse effect induces radiative forcing of the ocean, whichdiminishes the depth of winter convection, reducing the annualresupply of nutrients to the euphotic zone and therefore theannual primary production. That weakens the biological pump,which contributes to oceanic uptake of CO2,. As the ocean takesup less CO2, more remains in the atmosphere, accelerating therise in radiative forcing. We have used a mathematical modelof the upper ocean ecosystem, based on the Lagrangian Ensemblemethod, to estimate the sensitivity of the biological pump toradiative forcing, which lies at the heart of the plankton multiplier.We conclude that increasing radiative forcing by 5 W m(equivalent to doubling atmospheric CO2) reduces the deep fluxof paniculate carbon by 10%. That sensitivity is sufficientto produce significant positive feedback in the greenhouse.It means that the plankton multiplier will increase the rateof climate change in the 21st century. It also suggests thatthe plankton multiplier is the mechanism linking the Milankovicheffect to the enhanced greenhouse effect that produces globalwarming at the end of ice ages.  相似文献   

6.
Organic acid metabolism and ethylene formation during controlledatmosphere storage (CA-storage) of apples (Mallus pumila MILLER,cv Rolls) were studied. A higher titratable acidity was observedin apples during CA-storage as compared to those in air control.The incorporation of atmospheric 14CO2 into malic acid was greaterin apples stored in the higher CO2 concentration. The conversionof succinic acid-14C into fumaric acid-14C was slightly lessin the apple in modified high carbon dioxide atmosphere thanthose in air. O2 uptake and CO2 output by apple slices weremarkedly inhibited by the addition of succinic and malic acidsat a concentration higher than 25 mM. These factors seem to be the possible cause of a higher acidityof fruits stored in CA-condition. Ethylene production from wholefruits or tissue slices was markedly inhibited under CA-condition. The retardation of acid metabolism and the inhibition of ethyleneproduction of apples during CA-storage seem to be the importantfactors which help to maintain their storage quality. (Received March 18, 1970; )  相似文献   

7.
 依托FACE(Free-air CO2 enrichment)研究平台, 利用特制分根集气生长箱, 采用静态箱-GC(Gas chromatography)法, 连续两年研究 了大气CO2浓度升高和不同氮肥水平对冬小麦拔节期、孕穗抽穗期和灌浆末期的根系呼吸及生物量的影响。两季结果表明, CO2浓度升高和高氮 肥量均不同程度地增加了3个阶段的地上部和地下部的生物量, 这有利于增加根茬的还田量; CO2浓度升高对冬小麦不同生长阶段的根系呼吸影 响不同, 在拔节期影响较小;孕穗抽穗期显著增加了根系呼吸, 2004~2005季分别增加33.8%(148.1 mg N&;#8226;kg-1 干土, HN)和43.9%(88.9 mg N&;#8226;kg-1 干土, LN), 2005~2006季分别为23.8%(HN)和28.9%(LN); 而灌浆末期显著降低了根系呼吸, 2004~2005季分别降低31.4%(HN)和23.3% (LN), 2005~2006季分别为25.1%(HN)和18.5%(LN); 高施氮量比低施氮量促进了根系呼吸; 随着作物生长根系呼吸与地下生物量呈显著线性负相 关, 高CO2环境中的R2变小,表明随着作物生长发育高CO2浓度降低了作物根系呼吸与地下部生物量积累间的相关性.  相似文献   

8.
The Gaseous Microclimate of the Avian Nest During Incubation   总被引:1,自引:0,他引:1  
Interest in the gaseous microclimate of the avian nest duringincubition has greatly intensified in recent years because ofthe potentially important effects of micro climatic factorsupon embryonic respiration and hydration. Few data are availabledescribing levels of carbon dioxide and oxygen surrounding theeggs. What information is available, however suggests that inmost species levels of CO2 and O2 may not differ importantlyfrom that of the general atmosphere. The most likely exceptionsto this generalization are tunnel nesting birds. Data quantifyingwater vapor in the nest are more abundant. Nest humidity variessubstantially between species, but there are no apparent correlationsbetween nest humidity and breeding habitit or ambient humidity.Based upon limited empirical data and simulations using a deterministicmodel it appears that adult regulation of egg dehydration byshort-term modificttions of nest humidity may be neither necessarynor effective.  相似文献   

9.
中国森林生态系统土壤CO2释放分布规律及其影响因素   总被引:2,自引:0,他引:2  
联合国气候框架公约的签署提升了人们对全球变暖、碳循环变化的关注。陆地生态系统在全球变暖格局下的地位与作用,尤其是土壤碳库对全球变暖格局的响应是全球变化研究的焦点。土壤CO2释放作为土壤-大气CO2交换的主要途径之一,也就成为各国生态学家研究的重点内容。在对我国森林生态系统CO2释放通量以及相关气候、生物等因子的资料进行收集、整理和分析的基础上,探讨了我国森林生态系统土壤CO2释放的分布规律,以及这种规律性分布的气候、生物影响因素。对于我国这样一个南北跨度大的国家,不同区域的森林生态系统土壤CO2释放通量间存在较大的差异,在全国尺度上,森林生态系统土壤CO2释放通量平均值为(1.79 ± 0.86) g C m-2 d-1,而且土壤CO2释放通量随着纬度增加逐渐降低。作为一个复杂的生态过程,土壤CO2释放受到生物、非生物因子或独立、或综合的影响。通过分析指出,在全国尺度上,年均温、降雨量、群落净生产力及凋落物量显著地影响森林土壤CO2释放通量。同时,也正是这些影响因子的纬度分布,导致了我国森林生态系统土壤CO2释放通量的纬度分布规律。作为衡量土壤CO2释放对温度敏感性的重要指标,计算了我国森林生态系统土壤CO2释放温度敏感性系数-Q10值,约为1.5,该值显著低于全球平均水平,2.0。  相似文献   

10.
The continuous acidolysis of triolein and stearic acid was carried out by an immobilized lipase to elucidate the characteristics of supercritical carbon dioxide (SC-CO2) as a reaction medium. At first, an effect of temperature and pressure on the water adsorption to the immobilized lipase in the SC-CO2 was examined. Then, the continuous interesterification of triolein and stearic acid by the moist immobilized lipase was examined. The amount of water adsorption to the immobilized lipase in the supercritical carbon dioxide measured under the condition of a different temperature and pressure has been expressed by a correlation equation of Freundlich type by using relative water standardized with the solubility of water in each condition. Optimum operating conditions of the interesterification by immobilized lipase in the SC-CO2 was 323 K, 16.9 MPa and adsorbed-water concentration of 2 wt%. The production rate obtained by enzymatic acidolysis in the SC-CO2 was found to be about 0.03 mmol/h2g-immobilized enzyme, leaving 74% residual triglyceride at the optimum operating conditions.  相似文献   

11.
Bunce  James A. 《Annals of botany》1995,75(4):365-368
Previous work has shown that elevated carbon dioxide (CO2) concentrationsin the dark reversibly reduce the rate of CO2 efflux from soybeans.Experiments were performed exposing soybean plants continuallyto concentrations of 350 or 700 cm3 m-3 for 24 h d-1, or to350 during the day and 700 cm3 m-3 at night, in order to determinethe importance of the reduced rate of dark CO2 efflux for plantgrowth. High CO2 applied only at night conserved carbon andincreased dry mass during initial growth compared with the constant350 cm3 m-3 treatment. Long-term net assimilation rate was increasedby high CO2 in the dark, without any increase in daytime leafphotosynthesis. However, leaf area ratio was reduced by thedark CO2 treatment to values equal to those of plants continuallyexposed to the higher concentration. From days 14-21, leaf areawas less for the elevated night-time CO2 treatment than foreither the constant 350 or 700 cm3 m-3 treatments. For the days7-21-period, relative growth rate was significantly reducedby the high night CO2 treatment compared with the 350 cm3 m-3continuous treatment. The results indicate that some functionallysignificant component of respiration was reduced by the elevatedCO2 concentration in the dark.Copyright 1995, 1999 AcademicPress Glycine max L. (Merr.), carbon dioxide, plant growth, respiration  相似文献   

12.
《农业工程》2022,42(5):553-564
The increase in greenhouse gases, especially carbon dioxide, in the atmosphere contributes to climate change. People and policy makers are becoming more interested in the role of urban trees in regulating the global carbon cycle. Carbon dioxide emissions from anthropogenic sources are mainly caused by the burning of fossil fuels, which are major contributors to the increase in greenhouse gases in the atmosphere. Therefore, a better understanding of the carbon sequestration process by urban forests and its exchange between air and soil is the first step to offsetting the impacts of climate change in urban areas.Here, a dynamic model was constructed including the carbon stock of forest, litter carbon and soil organic carbon pool. The study emphasized the relationship between the three carbon pools. The monthly dynamics of the pools were studied. A sensitivity analysis was performed followed by calibration and validation. The results showed that the mean growth rate of forest biomass was the most sensitive factor, followed by the decomposition rate and the uptake rate of organic carbon by detritivores.If the biomass of the existing forest is maintained sustainably, more carbon dioxide could be sequestered. In addition, the model showed that afforestation in the Asansol-Durgapur Planning Area would increase the carbon stocks of the forest and to some extent offset the problem of carbon dioxide release from the nearby coal mines and other factories. In the near future, the model will benefit forest managers in carrying out urban management in the Earth's tropical belt.  相似文献   

13.
A continuous flow system was used to study the interactions between carbon dioxide and ethylene in intact sunflower (Helianthus annuus L.) plants. An increase in the concentration of carbon dioxide above the ambient level (0.033%) in the atmosphere surrounding the plants increased the rate of ethylene production, and a decrease in carbon dioxide concentration resulted in a decrease in the rate of ethylene production. The change in the rate of ethylene production was evident within the first 15 minutes of the carbon dioxide treatment. Continuous treatment with carbon dioxide was required to maintain increased rate of ethylene production. The rate of carbon dioxide fixation increased in response to high carbon dioxide treatment up to 1.0%. Further increases in carbon dioxide concentration had no additional effect on carbon dioxide fixation. Carbon dioxide concentrations higher than 0.11% induced hyponasty of the leaves whereas treatment with 1 microliter per liter ethylene induced epinasty of the leaves.  相似文献   

14.
The effect of glucose on microbial mineralization of soil organic matter (SOM) was studied in arable soil specimens. The fluxes of carbon dioxide generated during this degradation were deduced from differences in the carbon isotope abundance ratios of glucose δ13C = –11.4 per mil) and SOM δ13C = –27.01 per mil). The priming effect of glucose and respiratory quotient (RQ) were taken as indices of activation of SOM-consuming microbiota. The data on microbial mineralization of organic matter in soil obtained in this study show that the addition of a readily consumable substance (glucose) to soil favors SOM degradation and increases the release of carbon dioxide from soil to atmosphere.  相似文献   

15.
Tropical forest soils are known to emit large amounts of reactive nitrogen oxide compounds, often referred to collectively as NOy (NOy = NO + NO2 + HNO3 + organic nitrates). Plants are known to assimilate and emit NOy and it is therefore likely that plant canopies affect the atmospheric concentration of reactive nitrogen compounds by assimilating or emitting some fraction of the soil-emitted NOy. It is crucial to understand the magnitude of the canopy effects and the primary environmental and physiological controls over NOy exchange in order to accurately quantify regional NOy inventories and parameterize models of tropospheric photochemistry. In this study we focused on nitrogen dioxide (NO2), which is the component of NOy that most directly catalyzes the chemistry of O3 dynamics, one of the most abundant oxidative species in the troposphere, and which has been reported as the NOy species that is most readily exchanged between plants and the atmosphere. Leaf chamber measurements of NO2 flux were measured in 25 tree species growing in a wet tropical forest in the Republic of Panama. NO2 was emitted to the atmosphere at ambient NO2 concentrations below 0.53-1.60 ppbv (the NO2 compensation point) depending on species, with the highest rate of emission being 50 pmol m-2 s-1 at <0.1 ppbv. NO2 was assimilated by leaves at ambient NO2 concentrations above the compensation point, with the maximum observed uptake rate being 1,550 pmol m-2 s-1 at 5 ppbv. No seasonal variation in leaf NO2 flux was observed in this study and leaf emission and uptake appeared to be primarily controlled by leaf nitrogen and stomatal conductance, respectively. When scaled to the entire canopy, soil NO emission rates to the atmosphere were estimated to be maximally altered ᆧ% by the overlying canopy.  相似文献   

16.
BUNCE  JAMES A. 《Annals of botany》1990,65(6):637-642
Dark carbon dioxide efflux rates of recently fully expandedleaves and whole plants of Amaranthus hypochondriacus L., Glycinemax (L.) Merr., and Lycopersicon esculentum Mill. grown in controlledenvironments at 35 and 70 Pa carbon dioxide pressure were measuredat 35 and 70 Pa carbon dioxide pressure. Harvest data and whole-plant24-h carbon dioxide exchange were used to determine relativegrowth rates, net assimilation rates, leaf area ratios, andthe ratio of respiration to photosynthesis under the growthconditions. Biomass at a given time after planting was greaterat the higher carbon dioxide pressure in G. max and L. esculentum,but not the C4 species, A. hypochondriacus. Relative growthrates for the same range of masses were not different betweencarbon dioxide treatments in the two C3 species, because highernet assimilation rates at the higher carbon dioxide pressurewere offset by lower leaf area ratios. Whole plant carbon dioxideefflux rates per unit of mass were lower in plants grown andmeasured at the higher carbon dioxide pressure in both G. maxand L. esculentum, and were also smaller in relation to daytimenet carbon dioxide influx. Short-term responses of respirationrate to carbon dioxide pressure were found in all species, withcarbon dioxide efflux rates of leaves and whole plants lowerwhen measured at higher carbon dioxide pressure in almost allcases. Amaranthus hypochondriacus L., Glycine max L. Merr., Lycopersicon esculentum Mill., soybean, tomato, carbon dioxide, respiration, growth  相似文献   

17.
A novel method for the measurement of the rate of CO2 exchangecaused by solubilization and bicarbonate formation in leavesis presented. The method is based on the measurement of changesin O2 concentration, caused by the uptake or evolution of CO2from the gas flow as a result of solubilization in or desolubilizationfrom leaf tissue, by means of a zirconium-oxide O2 analyser.The advantages of the new method are a fast response and a lackof interference by the CO2 contained in the leaf chamber andleaf intercellular spaces. The method can be used for the investigationof the kinetics of CO2 transport from leaf intercellular spacesto chloroplasts and the role of carbonic anhydrase in this transportand the investigation of mechanistic and ecological aspectsof buffering, proton translocation and other processes controllingpH in chloroplasts of intact leaves. Key words: Leaf, carbon dioxide, pH.  相似文献   

18.
中亚热带人工针叶林对未来气候变化的响应   总被引:5,自引:0,他引:5  
利用基于生理生态学过程的EALCO模型,探讨了千烟洲中亚热带人工针叶林生态系统对未来气候变化的响应.结果表明:CO2浓度、温度和降水的变化对该人工林生态系统碳水通量影响的程度不同,其中CO2浓度>温度>降水.CO2浓度是生态系统总光合生产力(GPP)的主要驱动因子,温度与CO2浓度均是控制生态系统呼吸的主要环境因子,温度的升高使植物地上部分呼吸明显增加,而CO2浓度升高则对土壤呼吸影响较大.温度升高使蒸散(ET)增加,而CO2浓度升高则使ET减少.在未来气候变化情景(2100年)下,该人工林生态系统的净初级生产力将增加22%,说明其仍具有较强的固碳潜力.  相似文献   

19.
Bunce  James A. 《Annals of botany》2001,87(4):463-468
Predicting responses of plant and global carbon balance to theincreasing concentration of carbon dioxide in the atmosphererequires an understanding of the response of plant respirationto carbon dioxide concentration ([CO2]). Direct effects of thecarbon dioxide concentration at which rates of respiration ofplant tissue are measured are quite variable and their effectsremain controversial. One possible source of variation in responsivenessis the energy status of the tissue, which could influence thecontrol coefficients of enzymes, such as cytochrome-c oxidase,whose activity is sensitive to [CO2]. In this study we comparedresponses of respiration rate to [CO2] over the range of 60to 1000 µmol mol-1in fully expanded leaves of four C3andfour C4herbaceous species. Responses were measured near themiddle of the normal 10 h dark period, and also after another24 h of darkness. On average, rates of respiration were reducedabout 70% by the prolonged dark period, and leaf dry mass perunit area decreased about 30%. In all species studied, the relativedecrease in respiration rate with increasing [CO2] was largerafter prolonged darkness. In the C3species, rates measured at1000 µmol mol-1CO2averaged 0.89 of those measured at 60µmol mol-1in the middle of the normal dark period, and0.70-times when measured after prolonged darkness. In the C4species,rates measured at 1000 µmol mol-1CO2averaged 0.79 of thoseat 60 µmol mol-1CO2in the middle of the normal dark period,and 0.51-times when measured after prolonged darkness. In threeof the C3species and one of the C4species, the decrease in theabsolute respiration rate between 60 and 1000 µmol mol-1CO2wasessentially the same in the middle of the normal night periodand after prolonged darkness. In the other species, the decreasein the absolute rate of respiration with increase in [CO2] wassubstantially less after prolonged darkness than in the middleof the normal night period. These results indicated that increasingthe [CO2] at the time of measurement decreased respiration inall species examined, and that this effect was relatively largerin tissues in which the respiration rate was substrate-limited.The larger relative effect of [CO2] on respiration in tissuesafter prolonged darkness is evidence against a controlling roleof cytochrome-c oxidase in the direct effects of [CO2] on respiration.Copyright 2001 Annals of Botany Company Carbon dioxide, respiration, Abutilon theophrasti(L.), Amaranthus retroflexus(L.),Amaranthus hypochondriacus (L.), Datura stramonium(L.), Helianthus annuus(L.), Solanum melongena(L.), Sorghum bicolor(L. Moench), Zea mays  相似文献   

20.
Uptake and Accumulation of Inorganic Carbon by a Freshwater Diatom   总被引:3,自引:0,他引:3  
Colman, B. and Rotatore, C. 1988. Uptake and accumulation ofinorganic carbon by a freshwater diatom.—J. exp Bot 39:1025–1032. The mechanism of uptake of inorganic carbon and its accumulationhas been studied in the freshwater diatom Navicula pelliculosa.No external carbonic anhydrase could be detected, although itwas detected in cell extracts. The rate of photosynthetic O2evolution, in media in the range pH 7.5–8.5, exceededthe calculated rate of CO2 supply 2- to 5-fold, indicating thatHCO3 was taken up by the cells. At an external pH of7.5, the internal pH, measured by 14C-dimethyloxazolidine-2,4-dione distribution between the cells and the medium, was pH7.6 in the light and pH 7.4 in the dark. Accumulation of inorganiccarbon was determined by the silicone oil centrifugation methodand inorganic carbon pools of 23.5 mol m–3 were found,a concentration 21.6-fold that in the external medium. The resultsindicate an active accumulation of inorganic carbon againstpH and concentration gradients in this diatom, probably by activeHCO3 uptake. Key words: Bicarbonate transport, carbon dioxide, carbonic anhydrase, CO2 affinity, CO2 concentrating mechanism, internal pH, Navicula pelliculosa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号