首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogen synthase, a central enzyme in glucose metabolism, catalyzes the successive addition of α-1,4-linked glucose residues to the non-reducing end of a growing glycogen molecule. A non-catalytic glycogen-binding site, identified by x-ray crystallography on the surface of the glycogen synthase from the archaeon Pyrococcus abyssi, has been found to be functionally conserved in the eukaryotic enzymes. The disruption of this binding site in both the archaeal and the human muscle glycogen synthases has a large impact when glycogen is the acceptor substrate. Instead, the catalytic efficiency remains essentially unchanged when small oligosaccharides are used as substrates. Mutants of the human muscle enzyme with reduced affinity for glycogen also show an altered intracellular distribution and a marked decrease in their capacity to drive glycogen accumulation in vivo. The presence of a high affinity glycogen-binding site away from the active center explains not only the long-recognized strong binding of glycogen synthase to glycogen but also the processivity and the intracellular localization of the enzyme. These observations demonstrate that the glycogen-binding site is a critical regulatory element responsible for the in vivo catalytic efficiency of GS.  相似文献   

2.
A high molecular mass type-1 phosphatase complex can be isolated from muscle glycogen particles by a fast procedure that preserves the glycogen-binding subunit of phosphatase called G from proteolysis. G can be dissociated from such complex by ion exchange chromatography on FPLC SI column, with recovery of unproteolyzed G completely separated from phosphatase catalytic subunit.  相似文献   

3.
The glycogen-bound form of protein phosphatase-1 (PP-1G) was previously purified as a heterodimer composed of a 37-kDa catalytic (C) subunit and a proteolytically sensitive 103-kDa glycogen-binding (G) subunit [Str?hlfors, P., Hiraga, A. & Cohen, P. (1985) Eur. J. Biochem. 149, 295-303]. In this paper we demonstrate by a variety of criteria that the intact G subunit is a 161-kDa protein, and that the 103-kDa species (now termed G') is itself a product of proteolysis. A second phosphorylation site for cAMP-dependent protein kinase (termed site 2) was identified on the G subunit. The site 2 serine was phosphorylated at a comparable rate to site 1, and near stoichiometric phosphorylation could be achieved in the presence and absence of glycogen. Site 2 was dephosphorylated by PP-1 at a slow rate, whereas site 1 was resistant to autodephosphorylation. PP-1G, as well as the proteolytic activity responsible for degradation of the G subunit, remained tightly associated with glycogen-protein particles during washing with a variety of solvents. The PP-1G holoenzyme was released from glycogen-protein particles by dilution, with a dissociation half point corresponding to about 10 nM PP-1G. Binding experiments with purified PP-1G and glycogen indicated a bimolecular process with Kapp values corresponding to about 8 nM glycogen and 4 nM PP-1G. Binding was not significantly affected by increasing ionic strength to 0.5 M or variation of pH from 6 to 8. The results are consistent with a high-affinity glycogen-binding domain on the G subunit, and indicate that a physiological concentrations of phosphatase and glycogen, PP-1G should be almost entirely bound to glycogen.  相似文献   

4.
Glycogen phosphorylase (GP) is currently exploited as a target for inhibition of hepatic glycogenolysis under high glucose conditions. Spirohydantoin of glucopyranose and N-acetyl-beta-D-glucopyranosylamine have been identified as the most potent inhibitors of GP that bind at the catalytic site. Four spirohydantoin and three beta-D-glucopyranosylamine analogs have been designed, synthesized and tested for inhibition of GP in kinetic experiments. Depending on the functional group introduced, the K(i) values varied from 16.5 microM to 1200 microM. In order to rationalize the kinetic results, we determined the crystal structures of the analogs in complex with GP. All the inhibitors bound at the catalytic site of the enzyme, by making direct and water-mediated hydrogen bonds with the protein and by inducing minor movements of the side chains of Asp283 and Asn284, of the 280s loop that blocks access of the substrate glycogen to the catalytic site, and changes in the water structure in the vicinity of the site. The differences observed in the Ki values of the analogs can be interpreted in terms of variations in hydrogen bonding and van der Waals interactions, desolvation effects, ligand conformational entropy, and displacement of water molecules on ligand binding to the catalytic site.  相似文献   

5.
The glycogen-associated form of protein phosphatase-1 (PP-1G) is a heterodimer comprising a 37-kDa catalytic (C) subunit and a 161-kDa glycogen-binding (G) subunit, the latter being phosphorylated by cAMP-dependent protein kinase at two serine residues (site 1 and site 2). Here the amino acid sequence surrounding site 2 has been determined and this phosphoserine shown to lie 19 residues C-terminal to site 1 in the primary structure. The sequence in this region is: (sequence; see text) At physiological ionic strength, phosphorylation of glycogen-bound PP-1G was found to release all the phosphatase activity from glycogen. The released activity was free C subunit, and not PP-1G, while the phospho-G subunit remained bound to glycogen. Dissociation reflected a greater than or equal to 4000-fold decrease in affinity of C subunit for G subunit and was readily reversed by dephosphorylation. Phosphorylation and dephosphorylation of site 2 was rate-limiting for dissociation and reassociation of C subunit. Release of C subunit was also induced by the binding of anti-site-1 Fab fragments to glycogen-bound PP-1G. At near physiological ionic strength, PP-1G and glycogen concentration, site 2 was autodephosphorylated by PP-1G with a t0.5 of 2.6 min at 30 degrees C, approximately 100-fold slower than the t0.5 for dephosphorylation of glycogen phosphorylase under the same conditions. Site 2 was a good substrate for all three type-2 phosphatases (2A, 2B and 2C) with t0.5 values less than those toward the alpha subunit of phosphorylase kinase. At the levels present in skeletal muscle, the type-2A and type-2B phosphatases are potentially capable of dephosphorylating site 2 in vivo within seconds. Site 1 was at least 10-fold less effective than site 2 as a substrate for all four phosphatases. In conjunction with information presented in the following paper in this issue of this journal, the results substantiate the hypothesis that PP-1 activity towards the glycogen-metabolising enzymes is regulated in vivo by reversible phosphorylation of a targetting subunit (G) that directs the C subunit to glycogen--protein particles. The efficient dephosphorylation of site 2 by the Ca2+/calmodulin-stimulated protein phosphatase (2B) provides a potential mechanism for regulating PP-1 activity in response to Ca2+, and represents an example of a protein phosphatase cascade.  相似文献   

6.
The glycogen-binding (G) subunit of protein phosphatase-1G is phosphorylated stoichiometrically by glycogen synthase kinase-3 (GSK3), and with a greater catalytic efficiency than glycogen synthase, but only after prior phosphorylation by cyclic AMP-dependent protein kinase (A-kinase) at site 1. The residues phosphorylated are the first two serines in the sequence AIFKPGFSPQPSRRGS-, while the C-terminal serine (site 1) is one of the two residues phosphorylated by A-kinase. These findings demonstrate that (i) the G subunit undergoes multisite phosphorylation in vitro; (ii) phosphorylation by GSK3 requires the presence of a C-terminal phosphoserine residue; (iii) GSK3 can synergise with protein kinases other than casein kinase-2.  相似文献   

7.
The glycogen-binding (G) subunit of protein phosphatase-1 is phosphorylated in vivo. In rabbits injected with propranolol the serine residue termed site-1 was phosphorylated in 56% of the molecules isolated, and phosphorylation increased to 82% after administration of adrenalin. It is concluded that the G-subunit is a physiological substrate for cyclic AMP-dependent protein kinase. The G-subunit remained largely bound to glycogen even after injection of adrenalin, whereas half of the protein phosphatase-1 activity associated with glycogen was released into the cytosol. The results indicate that adrenalin induces dissociation of the catalytic subunit from the G-subunit in vivo.  相似文献   

8.
The glycogen-associated form of protein phosphatase-1 (PP-1G) comprises a 37-kDa catalytic (C) subunit and a 161-kDa glycogen-binding (G) subunit. In the preceding paper in this issue of the journal we showed that the C subunit is released from PP-1G in response to phosphorylation of the G subunit by cAMP-dependent protein kinase. We now show that at 0.15-0.2 M KCl the phosphorylase phosphatase activity of glycogen-bound PP-1G is 5-8 times higher than that of released C subunit or unbound PP-1G, which are strongly inhibited at these ionic strengths. The activity of glycogen-bound PP-1G towards glycogen synthase was about 5-fold higher than that of released C subunit at 0.15M KCl. Studies with glycogen-bound substrates and myosin P-light chain (which does not interact with glycogen) indicated that PP-1G activity is only enhanced compared to free C subunit at near physiological ionic strength and when both PP-1G and substrate are glycogen-associated. The inhibition by increasing ionic strength and enhanced activity upon binding to glycogen reflected changes in K'm, but not Vmax. From the determined specificity constant, k'cat/K'm approximately 4 x 10(6) s-1 M-1, it was calculated that at physiological levels of glycogen-bound PP-1G (200 nM) and phosphorylase (70 microM), dephosphorylation of the latter could occur with a half time of 15 s, sufficient to account for inactivation rates in vivo. The much higher catalytic efficiency of glycogen-bound PP-1G toward the glycogen-metabolising enzymes at physiological ionic strength compared to free C subunit substantiates the role of PP-1G in the regulation of these substrates, and establishes a novel mechanism for selectively regulating their phosphorylation states in response to adrenalin and other factors affecting phosphorylation of the G subunit.  相似文献   

9.
BACKGROUND: In muscle and liver, glycogen concentrations are regulated by the coordinated activities of glycogen phosphorylase (GP) and glycogen synthase. GP exists in two forms: the dephosphorylated low-activity form GPb and the phosphorylated high-activity form GPa. In both forms, allosteric effectors can promote equilibrium between a less active T state and a more active R state. GP is a possible target for drugs that aim to prevent unwanted glycogen breakdown and to stimulate glycogen synthesis in non-insulin-dependent diabetes. As a result of a data bank search, 5-chloro-1H-indole-2-carboxylic acid (1-(4-fluorobenzyl)-2-(4-hydroxypiperidin-1-yl)-2-oxoethy l)amide, CP320626, was identified as a potent inhibitor of human liver GP. Structural studies have been carried out in order to establish the mechanism of this unusual inhibitor. RESULTS: The structure of the cocrystallised GPb-CP320626 complex has been determined to 2.3 A resolution. CP320626 binds at a site located at the subunit interface in the region of the central cavity of the dimeric structure. The site has not previously been observed to bind ligands and is some 15 A from the AMP allosteric site and 33 A from the catalytic site. The contacts between GPb and CP320626 comprise six hydrogen bonds and extensive van der Waals interactions that create a tight binding site in the T-state conformation of GPb. In the R-state conformation of GPa these interactions are significantly diminished. CONCLUSIONS: CP320626 inhibits GPb by binding at a new allosteric site. Although over 30 A from the catalytic site, the inhibitor exerts its effects by stabilising the T state at the expense of the R state and thereby shifting the allosteric equilibrium between the two states. The new allosteric binding site offers a further recognition site in the search for improved GP inhibitors.  相似文献   

10.
11.
Glycogen-binding subunits for protein phosphatase-1 (PP1) target the PP1 catalytic subunit (PP1C) to glycogen particles, where the enzymes glycogen synthase and glycogen phosphorylase are concentrated. Here we identify sites within the striated muscle glycogen-binding subunit (G(M)) that mediate direct binding to glycogen synthase. Both PP1C and glycogen synthase were coimmunoprecipitated with a full-length FLAG-tagged G(M) transiently expressed in COS7 cells or C2C12 myotubes. Deletion and mutational analysis of a glutathione S-transferase (GST) fusion of the N-terminal domain of G(M) (residues 1-240) identified two putative sites for binding to glycogen synthase, one of which is the WXNXGXNYX(I/L) motif that is conserved among the family of PP1 glycogen-binding subunits. Either deletion of this motif or Ala substitution of Asn-228 in this motif disrupted the binding of glycogen synthase. Expression of full-length FLAG-G(M) in cells increased the activity of endogenous glycogen synthase, but protein disabled in either PP1 binding or glycogen synthase binding did not produce synthase activation. The results show that efficient activation of glycogen synthase requires a scaffold function of G(M) that involves simultaneous binding of both PP1C and glycogen synthase. Isoproterenol and forskolin treatment of cells decreased glycogen synthase binding to FLAG-G(M), thereby limiting synthase activation by PP1. This response was insensitive to inhibition by H-89, therefore probably not involving cAMP-dependent protein kinase, but did require inclusion of microcystin-LR during cell lysis, implying that phosphorylation was modulating binding of glycogen synthase. Phosphorylation control of binding to a scaffold site on the G(M) subunit of PP1 offers a new mechanism for regulation of muscle glycogen synthase in response to beta-adrenergic signals.  相似文献   

12.
The crystal structure of glycogen phosphorylase b in the presence of the weak activator 2 mm-inosine 5′-phosphate has been solved at 3 Å resolution. The binding interactions of the substrate, glucose 1-phosphate, at the catalytic site are described. The nearby presence (6 Å) of the essential co-factor, pyridoxal phosphate, is consistent with biochemical studies but an analysis of the way in which this group might act in catalysis leads to results that are inconsistent with solution studies. Moreover it is difficult to accommodate a glycogen substrate with its terminal glucose in the position defined by glucose 1-phosphate. Model-building studies show that an alternative binding mode for glucose 1-phosphate is possible and that this alternative mode allows a glycogen substrate to be fitted with ease. The alternative binding site leads directly to proposals for the mechanism in which the phosphate group of pyridoxal phosphate acts as a nucleophile and the imidazole of histidine 376 functions as a general acid. It is suggested that these are the essential features of the catalytic mechanism and that, in the absence of the second substrate, glycogen, and in the absence of AMP, the enzyme binds glucose 1-phosphate in a non-productive mode. Conversion of the enzyme to the active conformation through association with AMP may result in conformational changes that direct the binding to the productive mode.  相似文献   

13.
Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen.  相似文献   

14.
In this work we characterize an alcohol dehydrogenase (ADH) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PyAeADHII). We have previously found that PyAeADHII has no activity when standard ADH substrates are used but is active when α-tetralone is used as substrate. Here, to gain insights into enzyme function, we screened several chemical libraries for enzymatic modulators using an assay employing α-tetralone. The results indicate that PyAeADHII activity in the presence of α-tetralone was inhibited by compounds such as flunarizine. We also examined metal coordination of the enzyme in solution by performing metal substitution of the enzyme-bound zinc (Zn2+) with cobalt. The solution-based absorption spectra for cobalt substituted PyAeADHII supports substitution at the structural Zn2+ site. To gain structural insight, we obtained the crystal structure of both wild-type and cobalt-substituted PyAeADHII at 1.75 Å and 2.20 Å resolution, respectively. The X-ray data confirmed one metal ion per monomer present only at the structural site with otherwise close conservation to other ADH enzymes. We next determined the co-crystal structure of the NADPH-bound form of the enzyme at 2.35 Å resolution to help define the active site region of the enzyme and this data shows close structural conservation with horse ADH, despite the lack of a catalytic Zn2+ ion in PyAeADHII. Modeling of α-tetralone into the NADPH bound structure suggests an arginine as a possible catalytic residue. The data presented here can yield a better understanding of alcohol dehydrogenases lacking the catalytic zinc as well as the structural features inherent to thermostable enzymes.  相似文献   

15.
Shi L  Liu JF  An XM  Liang DC 《Proteins》2008,72(1):280-288
Glycerophosphodiester phosphodiesterase (GDPD; EC 3.1.4.46) catalyzes the hydrolysis of a glycerophosphodiester to an alcohol and glycerol 3-phosphate in glycerol metabolism. It has an important role in the synthesis of a variety of products that participate in many biochemical pathways. We report the crystal structure of the Thermoanaerobacter tengcongensis GDPD (ttGDPD) at 1.91 A resolution, with a calcium ion and glycerol as a substrate mimic coordinated at this calcium ion (PDB entry 2pz0). The ttGDPD dimer with an intermolecular disulfide bridge and two hydrogen bonds is considered as the potential functional unit. We used site-directed mutagenesis to characterize ttGDPD as a metal ion-dependent enzyme, identified a cluster of residues involved in substrate binding and the catalytic reaction, and we propose a possible general acid-base catalytic mechanism for ttGDPD. Superposing the active site with the homologous structure GDPD from Agrobacterium tumefaciens (PDB entry 1zcc), which binds a sulfate ion in the active site, the sulfate ion can represent the phosphate moiety of the substrate, simulating the binding mode of the true substrate of GDPD.  相似文献   

16.
Hao Hu  Haiyan Liu  Yunyu Shi 《Proteins》1997,27(4):545-555
Different pathways of the metal-induced isomerization of D-xylose to D-xylulose are investigated and compared in detail using energy minimization and molecular dynamics simulation. Two theoretical models are constructed for the reaction: in vacuum and in the enzyme D-xylose isomerase. The vacuum model is constructed based on the X-ray structure of the active site of D-xylose isomerase. It contains the atoms directly involved in the reaction and is studied using a semi-empirical molecular orbital method (PM3). The model in the enzyme includes the effects of the enzyme environment on the reaction using a combined quantum mechanical and molecular mechanical potential. For both models, the structures of the reactants, products, and intermediate complexes along the isomerization pathway are optimized. The effects of the position of the “catalytic Mg2+ ion” on the energies of the reactions are studied. The results indicate: 1) in vacuum, the isomerization reaction is favored when the catalytic metal cation is at site A, which is remote from the substrate; 2) in the enzyme, the catalytic metal cation, starting from site A, moves and stays at site B, which is close to the substrate; analysis of the charge redistribution of the active site during the catalytic process shows that the metal ion acts as a Lewis acid to polarize the substrate and catalyze the hydride shift; these results are consistent with previous experimental observations; and 3) Lys183 plays an important role in the isomerization reaction. The ϵ-NH3+ group of its side chain can provide a proton to the carboxide ion of the substrate to form a hydroxyl group after the hydride shift step. This role of Lys183 has not been suggested before. Based on our calculations, we believe that this is a reasonable mechanism and consistent with site-directed mutation experiments. © 1997 Wiley-Liss Inc.  相似文献   

17.
A cluster of conserved histidines and arginines (His-62, His-167, Arg-21, Arg-38, and Arg-168) in 3-phosphoglycerate kinase (PGK) has been implicated as possibly involved in the binding of 3-phosphoglycerate (3-PG) and/or stabilization of the negatively charged transition state. The role of these residues in the catalytic function of yeast PGK and in the substrate- and sulfate-dependent activation was investigated by site-directed mutagenesis. The following substitutions, R21A, R21Q, H62Q, H167S, and R168Q, produced functional enzymes. In contrast, the R38A and R38Q mutations resulted in a complete loss of catalytic activity. These results demonstrate that of the basic residues studied, only arginine 38 is essential for the catalytic function of PGK. A moderate decrease in the catalytic efficiency as the result of the R21A, H167S, and R168Q mutations and an increased catalytic efficiency of the H62Q mutant rule out a possible role of a positive charge at these positions in the mechanism of phosphoryl transfer reaction. In contrast to the wild type PGK and the H62Q mutant, both of which are activated at low and inhibited at high sulfate concentration, the H167S, R168Q, and R21A mutants exhibited a progressive inhibition with increased concentration of sulfate. The activation observed at high concentration of either ATP or 3-PG as a variable substrate in the steady-state kinetics of wild type PGK was abolished as the result of the latter three mutations. The results of this work support the hypothesis that PGK has two binding sites for anionic ligands, the catalytic and regulatory sites for each substrate and the activatory and inhibitory sites for sulfate, and suggest that arginine 21, arginine 168, and histidine 167 are located in the activatory anion binding site, common for sulfate, 3-PG, and ATP. The increased Km values for both substrates and decreased specific activities of the mutants suggest that this regulatory site is close to the catalytic site.  相似文献   

18.
A third form of protein phosphatase 1 has been identified in skeletal muscle which is distinct from the species composed of the catalytic subunit complexed to the glycogen-binding subunit (protein phosphatase 1G) or inhibitor-2 (protein phosphatase 1I). The third form has an apparent molecular mass of 110 kDa, is not immunoprecipitated by antibody prepared against the glycogen-binding subunit, does not interact with glycogen and is devoid of inhibitor-2. It is tightly bound to myosin and is therefore termed protein phosphatase 1M.  相似文献   

19.
The bacterial enzyme maltodextrin phosphorylase (MalP) catalyses the phosphorolysis of an alpha-1,4-glycosidic bond in maltodextrins, removing the non-reducing glucosyl residues of linear oligosaccharides as glucose-1-phosphate (Glc1P). In contrast to the well-studied muscle glycogen phosphorylase (GP), MalP exhibits no allosteric properties and has a higher affinity for linear oligosaccharides than GP. We have used MalP as a model system to study catalysis in the crystal in the direction of maltodextrin synthesis. The 2.0A crystal structure of the MalP/Glc1P binary complex shows that the Glc1P substrate adopts a conformation seen previously with both inactive and active forms of mammalian GP, with the phosphate group not in close contact with the 5'-phosphate group of the essential pyridoxal phosphate (PLP) cofactor. In the active MalP enzyme, the residue Arg569 stabilizes the negative-charged Glc1P, whereas in the inactive form of GP this key residue is held away from the catalytic site by loop 280s and an allosteric transition of the mammalian enzyme is required for activation. The comparison between MalP structures shows that His377, through a hydrogen bond with the 6-hydroxyl group of Glc1P substrate, triggers a conformational change of the 380s loop. This mobile region folds over the catalytic site and contributes to the specific recognition of the oligosaccharide and to the synergism between substrates in promoting the formation of the MalP ternary complex. The structures solved after the diffusion of oligosaccharides (either maltotetraose, G4 or maltopentaose, G5) into MalP/Glc1P crystals show the formation of phosphate and elongation of the oligosaccharide chain. These structures, refined at 1.8A and at 2.2A, confirm that only when an oligosaccharide is bound to the catalytic site will Glc1P bend its phosphate group down so it can contact the PLP 5' phosphate group and promote catalysis. The relatively large oligosaccharide substrates can diffuse quickly into the MalP/Glc1P crystals and the enzymatic reaction can occur without significant crystal damage. These structures obtained before and after catalysis have been used as frames of a molecular movie. This movie reveals the relative positions of substrates in the catalytic channel and shows a minimal movement of the protein, involving mainly Arg569, which tracks the substrate phosphate group.  相似文献   

20.
Magnetic resonance and kinetic studies of the catalytic subunit of a Type II cAMP-dependent protein kinase from bovine heart have established the active complex to be an enzyme-ATP-metal bridge. The metal ion is β,γ coordinated with Δ chirality at the β-phosphorous atom. The binding of a second metal ion at the active site which bridges the enzyme to the three phosphoryl groups of ATP, partially inhibits the reaction. Binding of the metal-ATP substrate to the enzyme occurs in a diffusion-controlled reaction followed by a 40 ° change in the glycosidic torsional angle. This conformational change results from strong interaction of the nucleotide base with the enzyme. NMR studies of four ATP-utilizing enzymes show a correlation between such conformational changes and high nucleotide base specificity. Heptapeptide substrates and substrate analogs bind to the active site of the catalytic subunit at a rate significantly lower than collision frequency indicating conformational selection by the enzyme or a subsequent slow conformational change. NMR studies of the conformation of the enzyme-bound peptide substrates have ruled out α-helical and β-pleated sheet structures. The results of kinetic studies of peptide substrates in which the amino acid sequence was systematically varied were used to rule out the obligatory requirement for all possible β-turn conformations within the heptapeptide although an enzymatic preference for a β2–5 or β3–6 turn could not be excluded. Hence if protein kinase has an absolute requirement for a specific secondary structure, then this structure must be a coil. In the enzyme-substrate complex the distance along the reaction coordinate between the γ-P of ATP and the serine oxygen of the peptide substrate (5.3 ± 0.7 Å) allows room for a metaphosphate intermediate. This finding together with kinetic observations as well as the location of the inhibitory metal suggest a dissociative mechanism for protein kinase, although a mechanism with some associative character remains possible. Regulation of protein kinase is accomplished by competition between the regulatory subunit and peptide or protein substrates at the active site of the catalytic subunit. Thus, the regulatory subunit is found by NMR to block the binding of the peptide substrate to the active site of protein kinase but allows the binding of the nucleotide substrate and divalent cations. The dissociation constant of the regulatory subunit from the active site (10?10m) is increased ~10-fold by phosphorylation and ~104-fold by the binding of cAMP, to a value (10?5m) which exceeds the intracellular concentration of the R2C2 holoenzyme complex (10?6m). The resulting dissociation of the holoenzyme releases the catalytic subunit, permitting the active site binding of peptide or protein substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号