首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for cheaper and environmentally friendly options of enhancing petroleum hydrocarbon degradation has continued to elicit research interest. One of such options is the use of animal manure as biostimulating agents. A combination of treatments consisting of the application of poultry manure, piggery manure, goat manure, and chemical fertilizer was evaluated in situ during a period of 4 weeks of remediation. Each treatment contained petroleum hydrocarbon mixture (kerosene, diesel oil, and gasoline mixtures) (10% w/w) in soil as a sole source of carbon and energy. After 4 weeks of remediation, the results showed that poultry manure, piggery manure, goat manure, and NPK (nitrogen, phosphorous, and potash [potassium]) fertilizer exhibited 73%, 63%, 50%, and 39% total petroleum hydrocarbon degradation, respectively. Thus, all the biostimulating treatment strategies showed the ability to enhance petroleum hydrocarbon microbial degradation. However, poultry manure, piggery manure, and goat manure treatments showed greater petroleum hydrocarbon reductions than NPK fertilizer treatment. A first-order kinetic equation was fitted to the biodegradation data and the specific degradation rate constant (k) values obtained showed that the order of effectiveness of these biostimulating strategies in the cleanup of soil contaminated with petroleum hydrocarbon mixtures (mixture of kerosene, diesel oil, and gasoline) is NPK fertilizer < goat manure < piggery manure < poultry manure. Therefore, this present work has indicated that the application of poultry manure, piggery manure, goat manure, and chemical fertilizer could enhance petroleum hydrocarbon degradation with poultry manure, showing a greater effectiveness and thus could be one of the severally sought environmentally friendly ways of remediating natural ecosystem contaminated with crude oil.  相似文献   

2.
Pseudomonas desmolyticum NCIM 2112 (Pd 2112) and Nocardia hydrocarbonoxydans NCIM 2386 (Nh 2386) demonstrated an ability to degrade diesel and kerosene. Triton X-100 had enhanced the diesel degradation process by reducing the time required for the maximum utilization of total petroleum hydrocarbon. Fourier transform infrared spectroscopy spectrum of degraded diesel indicates the presence of aliphatic and aromatic aldehydes, C=C aromatic nuclei, and substituted benzenes. Surface tension reduction and stable emulsification was increased using consortium when compared to individual strains. Triton X-100 showed increase in microbial attachment to hydrocarbon among the various chemical surfactants tested. For generating a rapid assay to screen microorganisms capable of degrading kerosene, the acetaldehyde produced in the degradation process could be used as an indicator of degradation. These results indicate diesel and kerosene degradation ability of both of the strains.  相似文献   

3.
An enzyme immunoassay (EIA) was developed using a monoclonal antibody (MAb) reagent that detects gasoline and diesel fuel. Xylene and toluene derivatives, which are common components of gasoline, were synthesized with various types of spacers and conjugated to either bovine serum albumen or bovine thyroglobulin. A total of 16 different hapten conjugates were used for immunizing both Balb/c and Swiss Webster mice. A panel of MAbs were produced that recognized xylene and toluene in a competitive EIA. An enzyme‐hapten conjugate was prepared for the MAb (F12–3C8) that demonstrated the most suitable characteristics for sensitivity, cross‐reactivity, and compatibility with extraction buffers. The resulting EIA gave ED50 values for m‐xylene of less than 1 ppm and values of less than 500 ppb for gasoline. Diesel fuel was also detected, with ED30 values in the range of 300 ppb. When samples of gasoline were tested, the EIA gave consistent ED30 values that were independent of manufacturer or octane rating. The EIA was compatible with simplified methods for the extraction of petroleum products from soil. The EIA detected gasoline in spiked soil samples, but was not affected by extracts of negative soil samples. Commercialization of this assay will offer speed, cost effectiveness, and other significant advantages over current testing methods of gasoline and diesel fuel contamination levels in soil.  相似文献   

4.
Schizosaccharomyces pombe isolated from palm wine was evaluated for single-cell-protein production using hydrocarbon feedstocks. The isolate was adapted for hydrocarbon utilization by continuous enrichment in a mineral-salts medium containing a mixture of two petroleum fractions, kerosene and diesel. The isolate grew well on the mineral-salts medium containing either kerosene or diesel as sole carbon and energy source. Hydrocarbon degradation using the isolate was demonstrated by gas chromatographic analysis. Optimum growth ofS. pombe was obtained at hydrocarbon feedstock concentrations of 1.5%. The optimum temperature and pH for growth of the yeast were found to be 30 °C and 5.5 respectively. Ammonium sulfate was found to be the most suitable nitrogen source. Total protein content of the hydrocarbon-grown yeast, analyzed by the Kjeldahl method, was high. The yeast was capable of synthesizing all the amino acids tested. These results show the feasibility of usingS. pombe grown on hydrocarbon feedstocks to produce single-cell protein.  相似文献   

5.
The determination of petroleum fuel in the blood of burned bodies was carried out by three different gas chromatographic procedures. Seven components of gasoline (isopentane, n-pentane, 2-methylpentane, benzene, 2-methylhexane, 3-methylhexane and toluene) and five of kerosene (xylene, C9H20, mesitylene, pseudocumene and C11H24) were chosen as indicators with a coefficient of variation of 5–24%. The methods were applied to four autopsy cases with a relatively low carboxyhaemoglobin (HbCO) content. When gasoline exposure had occurred, the blood concentrations determined were almost identical whatever the components selected. Great variations in the components determined were found after kerosene exposure, and hydrocarbons ≥C14 were hardly inhaled by the victims. A higher content of fuel in the left than in the right ventricular blood observed in the autopsy cases suggests fuel inhalation just before death. The same phenomenon was also observed in the content of blood HbCO. Determinations of petroleum fuel and HbCO in both the right and left ventricular blood would be useful for the forensic diagnosis on burned bodies with a low HbCO content.  相似文献   

6.
Changes in the rates of microbiological degradation of kerosene, diesel fuel, and fuel oil under the effect of UV irradiation were estimated by testing the respiratory activity of microbial communities. The strongest inhibitory effect was observed upon simultaneous UV irradiation of both natural water and petroleum products. Concentrations of CO2 in the microbial communities (microcosms) decreased from 6.7 to 3.6 vol. % upon oxidation of kerosene, from 5.9 to 0.8 vol. % upon oxidation of diesel fuel, and from 5.7 to 0.05 vol. % upon oxidation of fuel oil.  相似文献   

7.
A study was undertaken to investigate the distribution of biosurfactant producing and crude oil degrading bacteria in the oil contaminated environment. This research revealed that hydrocarbon contaminated sites are the potent sources for oil degraders. Among 32 oil degrading bacteria isolated from ten different oil contaminated sites of gasoline and diesel fuel stations, 80% exhibited biosurfactant production. The quantity and emulsification activity of the biosurfactants varied. Pseudomonas sp. DS10‐129 produced a maximum of 7.5 ± 0.4 g/l of biosurfactant with a corresponding reduction in surface tension from 68 mN/m to 29.4 ± 0.7 mN/m at 84 h incubation. The isolates Micrococcus sp. GS2‐22, Bacillus sp. DS6‐86, Corynebacterium sp. GS5‐66, Flavobacterium sp. DS5‐73, Pseudomonas sp. DS10‐129, Pseudomonas sp. DS9‐119 and Acinetobacter sp. DS5‐74 emulsified xylene, benzene, n‐hexane, Bombay High crude oil, kerosene, gasoline, diesel fuel and olive oil. The first five of the above isolates had the highest emulsification activity and crude oil degradation ability and were selected for the preparation of a mixed bacterial consortium, which was also an efficient biosurfactant producing oil emulsifying and degrading culture. During this study, biosurfactant production and emulsification activity were detected in Moraxella sp., Flavobacterium sp. and in a mixed bacterial consortium, which have not been reported before.  相似文献   

8.
Abstract Successful stimulation of N2 fixation and petroleum hydrocarbon degradation in indigenous microbial consortia may decrease exogenous N requirements and reduce environmental impacts of bioremediation following petroleum pollution. This study explored the biodegradation of petroleum pollution by indigenous N2 fixing marine microbial consortia. Particulate organic carbon (POC) in the form of ground, sterile corn-slash (post-harvest leaves and stems) was added to diesel fuel amended coastal water samples to stimulate biodegradation of petroleum hydrocarbons by native microorganisms capable of supplying a portion of their own N. It was hypothesized that addition of POC to petroleum amended water samples from N-limited coastal waters would promote the growth of N2 fixing consortia and enhance biodegradation of petroleum. Manipulative experiments were conducted using samples from coastal waters (marinas and less polluted control site) to determine the effects of POC amendment on biodegradation of petroleum pollution by native microbial consortia. Structure and function of the microbial consortia were determined by measurement of N2 fixation (acetylene reduction), hydrocarbon biodegradation (14C hexadecane mineralization), bacterial biomass (AODC), number of hydrocarbon degrading bacteria (MPN), and bacterial productivity (3H-thymidine incorporation). Throughout this study there was a consistent enhancement of petroleum hydrocarbon degradation in response to the addition of POC. Stimulation of diesel fuel biodegradation following the addition of POC was likely attributable to increases in bacterial N2 fixation, diesel fuel bioavailability, bacterial biomass, and metabolic activity. Toxicity of the bulk phase water did not appear to be a factor affecting biodegradation of diesel fuel following POC addition. These results indicate that the addition of POC to diesel-fuel-polluted systems stimulated indigenous N2 fixing microbial consortia to degrade petroleum hydrocarbons. Received: 29 December 1998; Accepted: 6 April 1999  相似文献   

9.
This field study investigated the colonization process of soil contaminated with different petroleum products (petrol, diesel fuel, spent engine oil; dose: 6000 mg of fuel·kg?1 dry mass [d.m.] of soil) by epigeic and edaphic invertebrates during the progress of natural bioremediation and bioremediation enhanced using selected microorganisms (ZB-01 biopreparation). Epigeic fauna was captured using pitfall traps. Occurrence of edaphic fauna in soil samples as well as total petroleum hydrocarbon contents (TPH) were also investigated. Results showed that inoculation with ZB-01 biocenosis allowed the degradation of petroleum derivatives in the soil contaminated with diesel fuel and engine oil, with 82.3% and 75.4% efficiency, respectively. Applying bioremediation to all contaminated soils accelerated the process of recolonization by edaphic invertebrates. However, the 28-month period was too short to observe full population recovery in soils contaminated with diesel fuel and engine oil. Microbe-enhanced bioremediation accelerated recolonization by epigeic invertebrates on soil contaminated with diesel fuel, whereas it exerted inhibitory effect on recolonization of soil contaminated with engine oil (especially by Collembola). The observed discrepancies in the rates of recolonization for soils contaminated with petrol and diesel fuel that were still noted at the stage of no longer different TPH levels justify the idea to include the survey of edaphic faunal density as one of the parameters in the ecological risk assessment of various bioremediation techniques.  相似文献   

10.
In order to produce microbial cell substances from petroleum, 83 strains of kerosene-utilizing yeasts, as a sole source of carbon, were isolated from 37 materials in contact with petroleum in the petroleum refinery. They could be distributed in either of 15 cultural groups with their colony appearances. Fifteen representative strains in 15 cultural groups were served for determination and identified with the following species: Candida tropicalis, 9 strains; C. guilliermondii, 2 strains; C. intermedia, 2 strains; C. pulcherrima, 1 strains; Torulopsis pinus, 1 strain.

In order to clarify what the ability of hydrocarbon utilization means biologically, 46 standard strains were served for test, of which the following 5 strains could utilize kerosene as a sole source of carbon: Candida albicans IAM 4888; C. arborea IAM 4147; C. lipolytica IAM 4947; C. tropicalis IAM 4862 and IAM 4924. Considering the result, the ability of utilizing kerosene would seem to characterize the genus, but it was not evident that it would characterize the species.

C. tropicalis Pk-233 gave the best cell yield among the above strains when kerosene was employed as a sole source of carbon and moreover, in the production of the cells of Pk-233, employing kerosene as a carbon material was compared with employing glucose.  相似文献   

11.
Bacteria possessing high capacity to degrade gasoline, kerosene, diesel oil, and lubricating oil were screened from several areas of Hokkaido, Japan. Among isolates, two strains, WatG and HokM, which were identified as new strains of Pseudomonas aeruginosa and Serratia marcescens species, respectively, showed relatively high capacity and wide spectrum to degrade the hydrocarbons in gasoline, kerosene, diesel, and lubricating oil. About 90-95% of excess amount of total diesel oil and kerosene added to mineral salts media as a sole carbon source could be degraded by WatG within 2 and 3 weeks, respectively. The same amount of lubricating oil was 60% degraded within 2 weeks. Strain HokM was more capable than WatG in degrading aromatic compounds in gasoline. This strain could also degrade kerosene, diesel, and lubricating oil with a capacity of 50-60%. Thus, these two isolates have potential to be useful for bioremediation of sites highly contaminated with petroleum hydrocarbons.  相似文献   

12.
The distribution of petroleum hydrocarbons and their effects on the periphytic algal biomass using in situ microcosms were investigated in Ponggol estuary located on the northeastern coast of Singapore. Dissolved or dispersed petroleum hydrocarbon (DDPH) concentrations in the surface and bottom waters and absorbed or adsorbed petroleum hydrocarbon (AAPH) concentrations in sediments were monitored from July 1999 to June 2000. Results showed concentrations ranging from 4.42 to 248.94 μg l−1, from 0.35 to 1099.65 μg l−1, and from 20.55 to 541.01 mg kg−1 for DDPH in surface and bottom waters and AAPH in sediments, respectively. Accidental spillages of fuel from dredgers operating in the estuary, fuel and engine oil from recreational boats, shipping operations in the adjacent strait, and runoff monsoon drains in the vicinity were some of the possible sources of petroleum hydrocarbons in the estuary. An assessment of environmentally realistic concentrations of petroleum hydrocarbons on periphytic algal biomass using in situ microcosms revealed signs of acute toxicity. A reduction in periphytic algal biomass (with respect to controls) of 68-93% was observed for various treatments exposed to diesel.  相似文献   

13.
The effects of petroleum hydrocarbons on the microbial community associated with decomposing Carex leaf litter colonized in Toolik Lake, Alaska, were examined. Microbial metabolic activity, measured as the rate of acetate incorporation into lipid, did not vary significantly from controls over a 12-h period after exposure of colonized Carex litter to 3.0 ml of Prudhoe Bay crude oil, diesel fuel, or toluene per liter. ATP levels of the microbiota became elevated within 2 h after the exposure of the litter to diesel fuel or toluene, but returned to control levels within 4 to 8 h. ATP levels of samples exposed to Prudhoe Bay crude oil did not vary from control levels. Mineralization of specifically labeled 14C-[lignin]-lignocellulose and 14C-[cellulose]-lignocellulose by Toolik Lake sediments, after the addition of 2% (vol/vol) Prudhoe Bay crude oil, motor oil, diesel fuel, gasoline, n-hexane, or toluene, was examined after 21 days of incubation at 10°C. Diesel fuel, motor oil, gasoline, and toluene inhibited 14C-[lignin]-lignocellulose mineralization by 58, 67, 67, and 86%, respectively. Hexane-treated samples displayed an increase in the rate of 14C-[lignin]-lignocellulose mineralization of 33%. 14C-[cellulose]-lignocellulose mineralization was inhibited by the addition of motor oil or toluene by 27 and 64%, respectively, whereas diesel fuel-treated samples showed a 17% increase in mineralization rate. Mineralization of the labeled lignin component of lignocellulose appeared to be more sensitive to hydrocarbon perturbations than was the labeled cellulose component.  相似文献   

14.
Biotechnological upgrading of fossil fuels is of increasing interest as remaining stocks of petroleum show increasing levels of contaminants such as heavy metals, sulfur and nitrogen-containing heteroaromatic compounds. Carbazole is of particular interest as a major petroleum component known to reduce refining yields through catalyst poisoning. In this study, the biotransformation of carbazole was successfully demonstrated in a liquid two-phase system, when solubilized in either 1-methylnaphthalene or in diesel fuel. The effects of solvent toxicity were investigated by expressing the carbazole-transformation genes from MB1332, a rifampicin-resistant derivative of Pseudomonas sp. LD2, in a solvent-resistant heterologous host, P. putida Idaho [1]. This solvent-resistant strain successfully degraded carbazole solubilized in 1-methylnaphthalene and in the presence of 10 vol% xylenes similar to the non-recombinant strain Pseudomonas sp. LD2. Identification of a suitable recombinant host, however, was essential for further investigations of partial pathway transformations. Recombinant P. putida Idaho expressing only the initial dioxygenase enzymes transformed carbazole to an intermediate well retained in the oil phase. Partial carbazole transformation converts carbazole to non-aromatic species; their effect is unknown on refinery catalyst poisoning, but would allow almost complete retention of carbon content and fuel value. Electronic Publication  相似文献   

15.
Abstract

Microbe-assisted phytoremediation depends on competent root-associated microorganisms that enhance remediation efficiency of organic compounds. Endophytic bacteria are a key element of the root microbiome and may assist plant degradation of contaminants. The aim of this study was to investigate the application of four hydrocarbon-degrading endophytic strains previously isolated from an oil sands reclamation area. Strains EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 (Pantoea sp.), and EA6-5 (Pseudomonas sp.) were inoculated in white sweet clover growing on soils amended with diesel at 5,000, 10,000, and 20,000?mg·kg?1. Our results indicate that plant growth inhibition caused by diesel fuel toxicity was overcome in inoculated plants, which showed significantly higher plant biomass. Analysis of soil F2 and F3 hydrocarbon fractions also revealed that these soils were remediated by inoculated plants when diesel was applied at 10,000?mg·kg?1 and 20,000?mg·kg?1. In addition, quantification of hydrocarbon-degrading genes suggests that all bacterial strains successfully colonized sweet clover plants. Overall, the endophytic strain EA6-5 (Pseudomonas sp.), which harbored hydrocarbon-degrading genes, was the most effective candidate in phytoremediation experiments and could be a strategy to increase plant tolerance and hydrocarbon degradation in contaminated (e.g., diesel fuel) soils.  相似文献   

16.
Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.  相似文献   

17.
ObjectiveTo examine the association between occupational exposure to petroleum-based and oxygenated solvents and the risk of oral and oropharyngeal cancer.MethodsThe ICARE study is a large population-based case-control study conducted in France between 2001 and 2007. This present analysis was restricted to men and included 350 and 543 cases of squamous cell-carcinoma of the oral cavity and oropharynx, respectively, and 2780 controls. Lifetime tobacco, alcohol consumption and complete occupational history were assessed through detailed questionnaires. Job-exposure matrices allowed us to assess occupational exposure to five petroleum-based solvents (white spirits; diesel/fuel oils/kerosene; gasoline; benzene; special petroleum products) and five oxygenated solvents (diethyl ether; tetrahydrofuran; ketones and esters; alcohols; ethylene glycol). Odds-ratios (ORs), adjusted for age, smoking, alcohol consumption and socioeconomic status, and 95% confidence intervals (CI) were estimated using unconditional logistic models.ResultsAssociations between oral cancer risk and exposure to white spirits and diesel/fuel oils/kerosene were suggested, but there was no exposure-response trend. Concerning exposure to oxygenated solvents, participants with the highest levels of cumulative exposure to diethyl ether had a significant excess risk of oropharyngeal cancer (OR = 7.78, 95%CI 1.42 to 42.59; p for trend = 0.04). Ever exposure to tetrahydrofuran was associated with a borderline significant increased risk of oral cancer (OR = 1.87, 95%CI 0.97 to 3.61), but no exposure-response trend was observed. Additional adjustments for exposure to other solvents did not substantially change the results.ConclusionOur results do not provide evidence for a major role of petroleum-based and oxygenated solvents in the occurrence of oral and oropharyngeal cancers in men.  相似文献   

18.
Summary Crude oil degradation was observed in water samples from three sites along the course of a polluted stream in Lagos, Nigeria. Consistent increase and decrease in the total viable counts (TVCs) of indigenous organisms occurred in the test and control experiments, respectively. Enrichments of the water samples with crude oil resulted in the isolation of nine bacteria belonging to seven genera. A mixed culture was developed from the assemblage of the nine species. The defined microbial consortium utilized a wide range of pure HCs including cycloalkane and aromatic HCs. Utilization of crude oil and petroleum cuts, i.e., kerosene and diesel resulted in an increase in TVC (till day 10) concomitant with decreases in pH and residual oil concentration. Crude oil, diesel and kerosene were degraded by 88, 85 and 78%, respectively, in 14 days. Substrate uptake studies with axenic cultures showed that growth was not sustainable on either cyclohexane or aromatics while degradation of the petroleum fractions fell below 67% in spite of extended incubation period (20 day). From the GC analysis of recovered oil, while reductions in peaks of n-alkane fractions and in biomarkers namely n-C17/pristane and n-C18/phytane ratios were observed in culture fluids of pure strains, complete removal of all the HC components of kerosene, diesel and crude oil including the isoprenoids was obtained with the consortium within 14 days.  相似文献   

19.
A diesel-degrading bacterium (strain IU5) isolated from oil-contaminated soil was characterized in this study. Fatty acid and 16s rDNA sequence analysis identified IU5 as a strain of Pseudomonas aeruginosa, and growth curve experiments identified the bacterium’s optimum conditions as pH 7 and 30 °C. P. aeruginosa IU5 degraded up to 60 of applied diesel (8500 mg/kg) over 13 days in a soil-slurry phase. In addition, this strain was able to grow on many other petroleum hydrocarbons as sole carbon sources, including crude oil, gasoline, benzene, toluene, xylene, and even PAHs such as naphthalene, phenanthrene and pyrene. Therefore, P. aeruginosa IU5 may be useful for bioremediation of soils and groundwater contaminated with a variety of hydrocarbons.  相似文献   

20.
The toxicities of three oil products with boiling-point ranges representative of petroleum hydrocarbons were tested on earthworms (Eisenia fetida) to investigate the correlation between bioaccumulated concentrations of polycyclic aromatic hydrocarbons (PAHs) and toxicity. The toxicities to earthworms were in the sequence: kerosene > diesel > bunker-C. After 14 days, the LC50s of the soils contaminated with kerosene, diesel, and bunker-C were 1079, 9135, and 15,609 mg/kg, respectively. Analysis of the body residue concentrations of PAHs in the earthworms showed that the accumulation of alkyl PAHs predominated that of the 16 priority PAHs. Principal component analysis (PCA) identified 12 PAHs, including four alkylated naphthalenes, as the oil constituents that affected mortality in the kerosene-contaminated soil. For the diesel-contaminated soil, eight PAHs were identified, including dibenzothiophene. It was not clear which compounds affected mortality in the bunker-C soil. Across the three series, biota-to-soil accumulation factors (BSAFs) ranged from 10–2.05 to 103.98, and generally increased as the hydrophobicity (Kow) or molecular weight of the alkyl PAHs increased. The toxicity endpoints of each oil product can be used as reference values in the risk assessment of soils contaminated with petroleum, and individual PAHs screened out have implications for future toxicity assessment of petroleum hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号