首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study provides geochemical partitioning, potential bioavailability, and enrichment of Cd, Cu, Pb, and Zn in bottom sediments collected from the Matanza-Riachuelo River and its main tributary streams. A modified Tessier sequential extraction procedure, complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, was applied to determine the partitioning of metals into four fractions (metals bound to amorphous sulfide, carbonate, and exchangeable), bound to Fe/Mn oxides (reducible), bound to organic matter/sulfide (oxidizable) and residual. Spatial and vertical distributions of metals were studied. The core sediments show a decreasing concentration of metals with depth. In top sediments, non-residual Cu was mainly associated with oxidizable phase, whereas Pb, Cd, and Zn were mainly associated with amorphous sulfide. Pb exhibited the highest enrichment in all sites. The ratio AVS/SEM was greater than one at sediment sections close to the water column, indicating that metals extracted with hydrochloric acid were mainly associated with the amorphous sulfide. The strong influence of amorphous sulfide in the retention of Cd, Pb, and Zn in anoxic sediments of Matanza-Riachuelo river system suggests that dredging and aeration could lead to the remobilization of metals from sediments to the water column, hence making the metals more available to the biota.  相似文献   

2.
Abstract

Taihu Lake is one of the most important water sources in the economically developed central-eastern part of China, and metal pollution is a major concern for the lake. The distribution and bioavailability of Cd, Cr, Cu, Pb, Sb and Zn were analysed in undifferentiated bottom sediments and in various particle-size fractions of the sediment from different parts of the lake. The average concentration of total metals in undifferentiated sediments ranged from 0.86 mg kg-1 (Cd) to 95.45 mg kg-1 (Zn) for the entire lake, with the highest concentrations in Zhushan Bay. The concentration of heavy metals was higher in extremely fine sands (0.064–0.125 mm) and fine sands (0.125–0.25 mm) than in other fractions. Sequential extractions showed that Cu, Zn and Cd were the most bioavailable accounting for 55.6%, 38.7% and 30.0% of their total concentration, respectively. However, the bioavailable proportion of many metals was not significantly different between grain grades except for Cu and Zn, which were higher in silts (<0.064 mm) than in other grades. Compared with the background values of local soils, the concentration of Zn, Cd, Cu, Pb and Sb was higher, indicating enrichment in the sediment. From ecological safety concerns, Zn, Cd and Cu should be examined closely because of their higher bioavailabilty in the sediment.  相似文献   

3.
4.
Distribution and magnitude of arsenic and metals in surface sediments collected from the coastal and estuarine areas of the southern Bohai Sea, China, were investigated. Sediments from the estuarine and coastal areas of the Jie and Xiaoqing Rivers contained highest concentrations of arsenic, cadmium, copper, mercury, and zinc. Mean concentrations of Cu, Zn, Cr, Pb, and Cd were higher than background concentrations determined for the areas. The magnitude of both enrichment factors (EF) and geoaccumulation indices (Igeo) suggested that pollution with As and metals was occurring along estuarine and coastal areas of the southern Bohai Sea. Risk analysis also suggested that concentrations of As and metals were sufficiently elevated as to cause adverse biological effects in the study area. According to the ecological risk index (RI) values, the upstream of the Jie River has a very high ecological risk for the waterbody. The data provided in this study are considered crucial for controlling and remediation of As and metals’ pollution of the southern Bohai Sea.  相似文献   

5.
Hg and As are the major hazardous pollutants in marine sediments due to their high toxicity to benthonic organisms. Understanding the spatial distribution, speciation and bioaccumulation of these toxic elements in sediments is therefore of high environmental importance for identifying their potential risks. Sediments and bivalves Paphia undulata were collected from the mariculture area of Dongshan Bay, China, for characterizing geochemistry (by using the European Community Bureau of Reference (BCR) sequential extraction procedure) and bioaccumulation of Hg and As [by calculating the biota sediment accumulation factor (BSAF)]. Both elements in sediments were mostly associated with the residual fraction (69.52–95.06% and 88.22–91.12% of the total concentration, respectively), followed by the oxidizable (bound to sulfides and organic matter) fraction (1.25–25.32% and 3.62–6.00%, respectively). However, Hg presented a higher bioaccumulation than As. Correlation analysis indicated that As in residual fraction and Hg in oxidizable fraction exert positive contributions (R = 0.927, P < 0.01 and R = 0.869, P < 0.05, respectively) on their own bioaccumulation factor. This indicated that P. undulata could adsorb both Hg in organic fraction and As in residual fraction from the sediments. Therefore, we should pay more attention to the potential dissolution and release of metals bound to sediments in the digestive tracts of marine organisms.  相似文献   

6.
The utility of interstitial water concentrations of metals and simultaneously extracted metals/acid-volatile sulfide differences (SEM–AVS) in two seasons were investigated to explain the biological availability of zinc in sediments to benthic organisms exposed in the laboratory. The amphipod Grandidierella japonica was exposed, in 10-day acute toxicity tests, to clean sediment spiked with zinc to obtain nominal treatments ranging from 0.25 to 74.4 mol g–1 dry weight with respect to the molar difference between SEMZn and AVS. When the molar difference between SEMZn and AVS (i.e., SEM–AVS) was <0 mol g–1, the concentration of zinc in the sediment interstitial water was low and few adverse effects were observed for any of the biological endpoints measured. Conversely, when SEMZn–AVS exceeded 0 mol g–1, the concentration of zinc in the interstitial water and amphipod mortality increased. These data compare favorably with observations made in short-term exposures and thus support the use of AVS as a normalization phase for predicting toxicity in metal-contaminated sediments in different season.  相似文献   

7.
The effect of the glass industry on soil metal characterization was assessed at five test sites at five successive distances in a semi-arid area. A comprehensive profile of Zn, Cd, Pb, Ni, Cu, and As levels in soils was obtained. The spatial distribution patterns of integrated contamination indices for these metals show a similar decreasing trend in distribution as we move further from the industrial cluster. There was significant correlation among individual heavy metal concentrations in the soil samples. Integrated contamination indices indicate that 64% of the sites were in the high contamination range and 28% were in the moderate contamination range. A statistically significant difference (P ≤ 0.001) was obtained for each metal on comparing mean metal content among soil samples. Phytoremedial potential of 12 native plant species was also evaluated. Individual elements displayed remarkably different patterns of accumulation in soils as well as plants. Plants established limited capabilities in mobilizing Zn, Pb, Ni, and Cu in the root zone. While Cd, Cu, As, Zn and Pb were predominantly partitioned in shoots, Ni was equally partitioned between shoots and roots. Interestingly, some plants showed a different partitioning trend at higher concentrations of different metals compared to lower concentrations. Potential species for phytoremediation include Calotropis procera (Milk weed), Chenopodium murale (Goosefoot),Poa annua (Annual bluegrass) and Datura stramonium (Thorn apple). None of the species showed phytoremedial potential for Ni and Cu.  相似文献   

8.
Attersee represents a good example of a lake situated in the Northern forelands of the Northern Calcareous Alps and influenced by different sediment-supplying processes during the postglacial. Several compounds, of different origin, form the sediments of the basin. Clastics which are mainly composed of dolomites derive from the Northern Calcareous Alps. Clastic input of organic and inorganic particles is accomplished by rivers and landslides. They are responsible for the main input of siliciclasts like quartz, feldspar and mica. A high proportion of the sediment results from autochthonous biogenic carbonate precipitation. In the shallow sublittoral areas of the northern part of the lake benthic decalcification caused by encrusting macro- and micro-phytes is dominant, while in the southern and central parts of the lake epilimnetic decalcification caused by the blooming of phytoplancton is more important during summer. The total biogenic calcium carbonate production reaches about 11 000 to 12 000 metric tons a year.Nutrients and residues of cyanophytes (Oscillatoria rubescens) deriving from the eutrophic lake Mondsee were washed into lake Attersee by the Mondseeache. High amount of phosphorus in the sediments of the southern basin depicts local eutrophication in the mouth area of the Mondseeache. The average sedimentation rate in lake Attersee can be determined by different dating methods. Sedimentation rates increased during the last 110 years from 1 mm a year to 1.8–2 mm a year as a result of human activities. Five main phases in the postglacial sedimentary history can be recognized: Würm moraines and finely banded varves (before 13 000 B.P.), the early Attersee stage (from 13 000 B.P. up to 1200 B.P.), and the later Attersee stage after the Bavarian colonization (from 1200 B.P. on). Using heavy metal and isotope analyses the sedimentary history can be reconstructed in more detail for the last 100 years.  相似文献   

9.
Acid volatile sulfide (AVS) is a natural agent in sediments which complexes some cationic metals and thereby influences the toxicity of these metals to benthic organisms. Because of its influence on metal bioavailability, AVS has been proposed as a key normalization phase for the development of sediment quality criteria for metals. However, studies conducted primarily in marine and estuarine systems have shown that AVS concentrations can vary markedly both temporally and with (sediment) depth. In this study, AVS concentrations were measured monthly for 16 mo in several segments of sediment cores from three freshwater lakes: Caribou Lake, Fish Lake and Pike Lake in northeastern Minnesota, USA. The concentrations of AVS in cores from the three lakes varied inversely with sediment depth. AVS concentrations also varied seasonally by as much as two orders of magnitude and were directly correlated with changes in water temperature. The correlation between AVS and temperature likely was related both to changes in primary productivity and sediment microbial activity.  相似文献   

10.
The purpose of this study was to characterize Ni- and Zn-sulfides precipitated in sulfate-reducing bacterial cultures. Fe-free media containing 58 mM SO 4 2? were amended with Ni and Zn chloride followed by inoculation. Precipitates were sampled from cultures after two weeks of incubation at 22, 45, and 60 ° C. Abiotic controls were prepared by reacting bacteria-free liquid media with Na 2 S solutions under otherwise identical conditions. Precipitates were collected anaerobically, freeze-dried and analyzed by x-ray diffraction (XRD), scanning electron microscopy, and for total Ni, Zn, and S. In Ni-containing media, biogenic sulfide precipitates were mostly heazelwoodite (Ni 3 S 2 ), whereas abiotic precipitates were mixed heazelwoodite and vaesite (NiS 2 ). The biogenic Ni-precipitates were better crystalline than the corresponding abiotic samples. Sphalerite (ZnS) was identified by XRD in precipitates sampled from Zn-containing media. Scanning electron microscopy revealed disordered morphological features for the sulfides, which occurred mostly as aggregates of fine particles in biogenic samples, whereas abiotic precipitates contained more plate- and needle-like structures.  相似文献   

11.
This study investigated the concentrations of Co, Cr, Cu, Mn, Ni, Pb and Zn in surface soil and corn cob samples collected from agricultural fields near a coal mine from Huaibei, China. Meanwhile, the mobility and availability of heavy metals in soil samples were evaluated by a modified three-step The European Community Bureau of Reference (BCR) sequential extraction procedure. The total concentrations of metals in soil pose no ecological threats to the local plants. Transfer factors of essential metals, Cu and Zn, as well as those of non-essential metal Pb, were higher than those of the remained metals. The results of BCR fractionation analysis revealed that the acid soluble, reducible and oxidizable fractions of the Mn, Pb and Zn were higher than those of the residual fraction, suggesting that these elements may be more bioavailable. The pH and organic matter contents of soil were significant parameters affecting speciation of metals in soil samples. Hierarchical cluster analysis indicated significant correlations between metal levels in corn grains and more available (acid soluble and reducible) fractions in soil, indicating that heavy metals in the first two fractions were more available for corn crops. The elevated mobility and bioavailability of Pb in soil are of great concern in the study area.  相似文献   

12.
Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.  相似文献   

13.
Recruitment of total phytoplankton, chlorophytes and cyanobacteria from lake sediments to the water column was studied using photosynthetic pigments at one site (1.5 m) in Lake Taihu, a large shallow lake in China. Samples were taken weekly from the migration traps installed on the bottom from March to May 2004. Abundance of total phytoplankton, chlorophytes and cyanobacteria were represented by Chlorophyll (Chl) a, b, and phycocyanin (PC), respectively. Over the three months, total phytoplankton, chlorophytes, and cyanobacteria corresponding to 48.9%, 68.9% and 316.2% of their initial concentrations in surface sediments were recruited in Lake Taihu. However, compared with their increase in pelagic abundance over the same period, the recruitment accounted for a rather small inoculum. Accompanying the recruitment, total phytoplankton and chlorophytes declined and cyanobacteria increased in the upper 0–2 cm sediments; colonies of Microcystis aeruginosa in the water column enlarged from small size with several cells to large colonies with hundreds of cells. Thus, overwintering and subsequent growth renewal of pelagic phytoplankton merits further study and comparison with benthic survival and recruitment. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In this study we quantified the percent CaCO3 polymorph composition in otoliths of larval and juvenile Lake Sturgeon Acipenser fulvescens via X-ray microdiffraction. Sagittal otoliths of sub-adults were primarily composed of aragonite (> 90%) while the lapilli otoliths were 100% vaterite. This is the first time the presence of aragonite in otoliths has been reported in an acipenseriform and is surprising given that the ability to form aragonite otoliths was not thought to have evolved until the separation of teleost and holostean species from other Actinopterygian fishes (e.g., sturgeon, paddlefish, gar).  相似文献   

15.
Phosphine (PH3) was monitored in the Taihu Lake in China by a GC/NPD method, coupled with cryo-trapping enrichment technology. Results showed that PH3 was universally detected in sediments, lake water and atmosphere of the Taihu Lake area. Total phosphorus (TPs) and fractions of different phosphorus species in lake sediments were separately measured as dissolved phosphate (DP), phosphorus bound to aluminum (Al-P), iron (Fe-P) and calcium (Ca-P), occluded phosphorus (OP), and organic phosphorus (Org-P) by sequential chemical extraction. High PH3 levels were correlated with high TPs values in sediments and with eutrophication at different sites. In addition, a positive linear correlation equation was obtained between the concentrations of PH3 in lake sediments and of the phosphorus fractions. The resulting multiple linear regression equation is PH3 = −165 + 63.3 DP + 0.736 Al-P + 2.33 Ca-P + 2.29 Org-P. The flux of PH3 across the sediment–water interface was estimated from sediment core incubation in May and October 2002. The annual average sediment–water flux of PH3 was estimated at ca. 0.0138±0.005 pg dm−2 h−1, the average yearly emission value of PH3 from Taihu Lake sediments to water was calculated to be 28.3±10.2 g year−1, which causes a water PH3 concentration of up to 0.178±0.064 pmol dm−3. The real importance of PH3 could be higher, because PH3 could be consumed in the oxic sediment–water boundary layer and in the water column. Spatial and temporal distributions of total phosphorus (TPw) and chlorophyll a (Chl-a) in the water column of Taihu Lake were measured over the study period. Higher water PH3 has also been found where the TPw content was high. Similarly, high Chl-a was consistent with higher water PH3. Positive relationships between PH3 and TPw (average R2 = 0.47±0.26) and Chl-a (average R2 = 0.23±0.31) were observed in Taihu Lake water.  相似文献   

16.
This investigation represents the first extensive study of the spatial distribution, sources, and potential effects of polycyclic aromatic hydrocarbons (PAHs) in sediments from Lake Manzala, the largest of Egypt's Mediterranean coastal lakes. The concentrations of PAHs (Σ39 components) ranged from 246 to 9910 ng g?1 dry wt., the highest values corresponding to urban hotspots with high anthropogenic input coming from wastewater discharges and combustion activities and decreasing offshore. The levels of PAHs were significantly lower compared to values reported in several coastal/estuarine areas (e.g., in Spain, Italy, USA, and Egypt) receiving substantial anthropogenic inputs from urban and industrial activities. Source ratios indicated that the PAHs were mainly from petrogenic sources in near-shore urban hotspots, with higher contributions of pyrolytic sources in coastal and offshore areas which are little influenced by human activities. Sediment quality guidelines (SQGs) showed that except at one station heavily impacted by sewage discharge, the total and individual PAH concentrations were below effect range low (ERL) concentrations that are not likely to adversely affect benthic biota.  相似文献   

17.
Ichthyofaunal diversity of the Dianshan lake in Shanghai, China was assessed during the year 2013 from samples of finfish harvested using fleets of gillnets and trawls of different mesh sizes with the aim of generating necessary data that could support sustainable use of finfish in this lake. Morphometric parameters of specimens caught were taken following standard procedures. Totally 21,308 specimens belonging to 40 species, 15 families and 7 orders were encountered throughout the study period. Seasonal abundance was lowest (395 individuals) during March (spring) and highest (4428 individuals) during August (summer). Cyprinidae was the dominant family (22 species) and Coilia ecetenes taihuensis was the most abundant species (30.69%), followed by Acheilognathus taenianalis (17.8618%), Plagiognathops microlepis (16.567%), Carassius auratus (14.492%). The evenness, richness and biodiversity of the faunal assemblage were also evaluated by Shannon–Wiener index (H′), Margalef’s diversity Index (d) and evenness index (J) respectively. Hypophthalmichthys nobilis was the largest and heaviest fish (34.909 cm, FL; 889.355 g, W), the smallest fish in length recorded was Odontamblyopus rubicundus (4.19 cm) while Plecoglossus altivelis altivelis (1.1 g) was the lowest in terms of mean weight. The mean condition factor for all fish species was (K = 1.72), showing fish species were generally in ‘good’ condition. Fluctuations in species occurrence and abundance noted in our study may be accounted from the variation in the physico-chemical parameters of the Lake in respect to time. But, under such a situation it is evident that the small fish species increased to a great extent and a few like Coilia ecetenes taihuensis became the dominant.  相似文献   

18.
Zinc (Zn) is recognized as an essential nutrient, and is added as a supplement to animal and human diets. There are claims that zinc methionine (ZnMet) forms a stable complex that is preferentially transported into tissues, and this has contributed to uncertainty about conflicting reports on the bioavailability of various Zn compounds. This study evaluated the cellular and intestinal uptake of inorganic and organic forms of Zn. Steady-state uptake of65Zn by human intestine epithelial cells, and monkey kidney fibroblasts was not significantly different with zinc chloride (ZnCl2), ZnMet, or zinc propionate (ZnProp) (P > 0.05). Uptake of65Zn from zinc chelated with EDTA was significantly lower (P < 0.01). In live mice,65Zn uptake by perfused intestine and deposition in intestine and liver showed no significant difference between ZnCl2 and ZnMet. Equimolar [65Zn]methionine and zinc[35S]methionine were prepared according to a patented method that yields “ complexed” Zn. Cellular uptake of the radiolabeled methionine was <0.1% of the radiolabeled Zn from these complexes, indicating separate uptake of the Zn and methionine. Gel filtration did not distinguish between65Zn in ZnCl2, ZnProp, or reagent ZnMet, though feed-grade ZnMet containing >10% protein did give a higher-mol-wt form of65Zn. Results of this study show equivalent uptake of Zn from inorganic and organic compounds, and support recent feed trials on Zn bioavailability.  相似文献   

19.
In this study, an assessment is made of the environmental impacts of heavy metal concentration and fractionation in bed sediments of the saline Maharlu Lake, SW Iran. Total elemental analysis indicated that sediments were highly enriched in Pb and Cd. Sequential extraction analysis revealed that salt of the lake is probably highly contaminated with Cd, Pb, and Co. Due to the oxidizing conditions of the lake, the organic matter fraction of the elements was not significant. In all sediments, Cd, Pb, Co, Mn, and Zn were strongly associated with exchangeable plus carbonate fractions, with mean percentage of 76.4%, 65.3%, 56%, 40.9%, and 34.3%, respectively. On average, the percentage of Ni associated with the sum of the exchangeable and carbonate fractions was 19.8%. Cr, Fe, and Cu fractionation indicated that these metals are environmentally inert and immobile. Statistical relationships among metal fractions and sediment properties showed that Cd, Pb, Zn, Ni, Co, and Mn were mainly from recent anthropogenic sources, while such sources were less important for Cr, Cu, and Fe. The latter metals represented natural geochemical levels.  相似文献   

20.
Heavy metals (Cd, Ni, Cu, Pb, and Zn) and total sulfur (TS) in both surficial sediments and adjacent floodplain topsoils of the Lean River catchment are investigated to comprehend the effects of flooding on heavy metals in soils, the evolution of the quality of sediments, and transfer of sediment metals. The results show that concentrations of metals except for Ni in soils are significantly correlated with those in sediments. At most upstream or downstream locations, sediment metal concentrations are found comparable to those in soils (sed/soil≈1). For Cu at locations close to the Dexing Copper Mine (DCM), flooding brought Cu-poor clays into the floodplain soil system and this leads to sed/soil<1, while at locations adjacent to the Yinshan Lead-zinc Mine (YLM), suspended solids containing high concentrations of iron and magnesium oxide absorb large quantities of dissolved Cd, Pb, and Zn and deposit on the floodplain during flooding (sed/soil>1). In spite of an elevated Cu production of the DCM, a significant decrease in sediment Cu concentrations is found as compared to those 10 years ago. The decrease may be due to the elevated Cu ore utilizing efficiency and the use of a new modern tailing pool. At the location closest to the Yinshan Lead-zinc Mine (YLM), Pb and Zn concentrations increased in recent sediments. In the Lean River, metal contamination in sediments cannot reach the location 60 km downstream of their sources in 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号