首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of organic matter (OM) from organic amendments used in the remediation of metal contaminated soils leads to changes in soil chemical properties shortly after their addition, which may affect the soil metal distribution. The effects of two differing organic amendments on OM mineralisation and fractionation of heavy metals in a contaminated soil were investigated in an incubation experiment. The treatments were: control unamended soil, soil amended with fresh cow manure, and soil amended with a compost having a high maturity degree. The soil used was characteristic of the mining area at La Unión (Murcia, Spain) with 28% CaCO(3) and sandy-loam texture (pH 7.7; 2602 mg kg(-1)Zn; 1572 mg kg(-1)Pb). Manure and compost C-mineralisation after 56 days (24% and 3.8%, respectively) were below values reported previously for uncontaminated soils. Both amendments favoured Zn and Pb fixation, particularly the manure. Mn solubility increased at the beginning of the experiment due to a pH effect, and only Cu solubility increased through organic matter chelation in both amended soils.  相似文献   

2.
Soil amendment with two types of composts: animal manure (AC) and vegetable waste (VC) induced composts have potential to alleviate Cd toxicity to maize in contaminated soil. Therefore, Cd mobility in waste water irrigated soil can be addressed through eco-friendly and cost effective organic soil amendments AC and VC that eventually reduces its translocation from polluted soil to maize plant tissues. The comparative effectiveness of AC and VC at 3% rate were evaluated on Cd solubility, its accumulation in maize tissues, translocation from root to shoot, chlorophyll contents, plant biomass, yield and soil properties (pH, NPK, OM). Results revealed that the addition of organic soil amendments significantly minimized Cd mobility and leachability in soil by 58.6% and 47%, respectively in VC-amended soil over control. While, the reduction was observed by 61.7% and 57%, respectively when AC was added at 3% over control. Comparing the control soil, Cd uptake effectively reduced via plants shoots and roots by 50%, 46% respectively when VC was added in polluted soil. However, Cd uptake was decreased in maize shoot and roots by 58% and 52.4% in AC amended soil at 3% rate, respectively. Additionally, NPK contents were significantly improved in polluted soil as well as in plant tissues in both composts amended soil Comparative to control, the addition of composts significantly improved the maize dry biomass and chlorophyll contents at 3% rate. Thus, present study confirmed that the addition of animal manure derived compost (AC) at 3% rate performed well and might be consider the suitable approach relative to vegetable compost for maize growth in polluted soil.  相似文献   

3.
The addition of composted buffalo manure may lead to qualitative and quantitative improvement of the organic matter content of degraded tropical agricultural soils in Northern Vietnam. The objectives of this study were to follow the biochemical changes occurring during composting of buffalo manure with and without earthworms during 3 months and to study the effect of the end products (compost and vermicompost) on soil biochemical parameters and plant growth after two months of incubation under controlled conditions in an open pot experiment. Our conceptual approach included characterisation of organic matter of the two composts before and after addition to soil by elemental, isotopic analysis and analytical pyrolysis and comparison with conventional fertilisation. We also analysed for lignin content and composition.Our results showed that composting in the presence of earthworms led to stronger transformation of buffalo manure than regular composting. Vermicompost was enriched in N-containing compounds and depleted in polysaccharides. It further contained stronger modified lignin compared to regular compost. In the bulk soil, the amendment of compost and vermicompost led to significant modification of the soil organic matter after 2 months of exposure to natural weather conditions. The lignin component of SOM was unaffected whatever the origin of the organic amendment. Compost and vermicompost amendments both enhanced aggregation and increased the amount of organic matter in water stable aggregates. However, vermicompost is preferable to compost due to its beneficial effect on plant growth, while having similar positive effects on quantity and quality of SOM.  相似文献   

4.
Composting is a realistic option for disposal of olive mill pomace (OMP) by making it suitable as a soil amendment for organic farming. The chemical and physical characteristics and contribution of particle-size fractions to total nutrients and carbon mineralization of seven commercial composts of OMP (COMP) were investigated. Higher proportions of manure, co-composted with OMP, reduced the organic matter (OM), total carbon and C:N ratio of the product, but increased the content of nutrients and fine particles. The fine particles had higher nutrient contents, but less OM and carbon and, unlike larger particles, did not exhibit any phytotoxicity. Less than 1.5% of added carbon was mineralized in whole compost, but a lower rate was found with larger particles. Separation of COMP by particle size fractionation and application as a soil conditioner is recommended for better optimization of COMP with the <1 mm fraction providing the higher quality compost.  相似文献   

5.
This paper reports on the persistence of total and immobilised enzyme activities (urease and phosphatase) in a soil amended with organic wastes containing high levels of total-urease and phosphatase activity. Fresh organic materials showed the highest values for both total-enzymatic activities. The addition of organic waste to soil increased both total-enzymatic activities in the soil, which, after 360 days, showed values above those of the control. Immobilised enzymes were also higher in the fresh wastes than in the soil with compost, while the specific enzymatic activity levels (enzymatic activity per unit of carbon) were similar. The immobilised urease activity was greater in the amended soil than in the control. At the beginning of the incubation period, the immobilised urease activity was significantly higher in the soil amended with fresh organic wastes than with compost. However, this activity decreased with incubation, whilst the compost-immobilised urease activity increased with time. The effect of organic amendment on immobilised phosphatase activity was similar to that shown by immobilised urease but less pronounced. The persistence of both enzymes was significantly higher in the soil amended with compost than in that amended with fresh materials.  相似文献   

6.
The reclamation of burned soils in Mediterranean environments is of paramount importance in order to increase the levels of soil protection and minimise erosion and soil loss. The changes produced in the content of total organic carbon (TOC), N (Kjeldahl) and available P, K, Ca and Mg by the addition of different doses of a municipal solid waste compost to a burned soil were evaluated during one year. The effect of organic amendment on the improvement in the vegetation cover after one year was also evaluated. The organic amendment, particularly at a high dose, increased the TOC and N-Kjeldahl content of the soil in a closely related way. The levels of available K in soil were also enhanced by the organic amendment. Although the effects on all three parameters tended to decrease with time, their values in the amended soils were higher than in the control soil, which clearly indicates the improvement in the chemical quality of the soil brought about by the organic amendment. The available P content did not seem to be influenced by organic treatment, while available Mg levels were higher than in the control during the first 4 months following organic amendment. The application of compost to the burned soil improved its fertility and favoured rapid vegetal recovery, thus minimising the risk of soil erosion.  相似文献   

7.
含铜有机肥对土壤酶活性和微生物群落代谢的影响   总被引:3,自引:0,他引:3  
陈琳  谷洁  高华  王小娟  胡婷  陈智学 《生态学报》2012,32(12):3912-3920
以猪粪和麦秆为原料,向原料中添加不同浓度硫酸铜溶液模拟原料铜污染堆制有机肥,通过小白菜盆栽试验施用堆制腐熟的有机肥,研究其对土壤酶活性及群落功能多样性的影响。结果表明,与CK处理(Cu质量分数10.35mg/kg)相比,L处理(Cu质量分数300.00mg/kg)的脱氢酶活性下降了64.75%,H处理(Cu质量分数900.00 mg/kg)的脱氢酶活性下降了90.66%。在Biolog生态测试板(ECO Microplate)温育过程中,CK处理的AWCD值(Average Well Color Development)始终大于L处理和H处理。与CK处理相比,L处理和H处理96h的AWCD值分别下降了3.55%、36.59%,CK处理显著高于H处理(P<0.01)。多样性指数对含Cu有机肥有不同的响应,L处理的shannon指数最高,H处理的simpson指数最高,CK处理的Mclntosh指数及Mclntosh均匀度最高。主成分分析结果表明,对3个处理起分异作用的碳源主要是糖类和羧酸类。  相似文献   

8.
堆肥对土壤重金属垂直分布的影响与污染评价   总被引:8,自引:1,他引:7  
对不同畜禽粪便堆肥与土壤重金属垂直分布的关系进行了研究.结果表明,在畜禽粪便堆肥过程中,粪堆下土壤pH值和有机质显著增加,其pH和有机质含量的垂直分布表现为从表层到底层逐渐降低.各种畜禽粪便粪堆下土壤Zn、Cd含量明显增高,且从表层到底层呈逐渐减小的趋势.鸡粪和猪粪堆下土壤Cu含量随土层深度增加而降低;牛粪堆下土壤Cu含量随土层深度增加没有明显的变化.自然条件下Cd和Zn在土壤系统中的迁移能力大于Cu.各粪堆下的部分土层Cu、Zn、Cd含量超过我国土壤环境质量一级标准.应用地质积累指数法对各土层污染评价的结果表明,只有肉鸡粪堆下0~10cm土壤和蛋鸡粪堆下0~40cm土壤受到轻度Zn污染,其它粪堆下各土层均未受到Cu、Zn、Pb和Cd污染.  相似文献   

9.
A loam soil from Pennsylvania without a history of exposure to explosives was incubated with 5 g kg-1 of 15N-labeled 2,4,6-trinitrotoluene (TNT) and 200 μCi kg-1 of 14C-TNT for 3 days and then amended with compost at a 1:2 soil to compost ratio. The compost was prepared by mixing 40% alfalfa hay, 40% grass hay, 10% spent mushroom compost, and 10% municipal biosolids. The mixture of soil and compost was inoculated with methanogens from cattle manure, amended with glucose and starch, and incubated for 37 days under anaerobic conditions. The anaerobic incubation was followed by 26 days of forced aerobic incubation. At the end of the aerobic phase, most of the radioactivity was associated with organic matter; only 8.7% could be extracted with water and methanol, but no TNT was present in the extracts as determined by high-performance liquid chromatography. The unextractable radioactivity was associated with humic acid (40.0±1.0%), fulvic acid (14.3±1.4%), and humin (28.2±0.5%). Radioactive materials associated with humic acid and humin were analyzed by solid-state 15N-nuclear magnetic resonance (NMR) spectrometry. The NMR spectra indicated that nitro groups of TNT had been reduced to amino groups thatwere subsequently involved in the formation of covalent bonds with soil organic matter.  相似文献   

10.
Azam  F.  Mahmood  T.  Malik  K. A. 《Plant and Soil》1988,107(2):159-163
A laboratory incubation experiment was conducted to study the effect of organic amendment and moisture regimes on the immobilization-remineralization of NO3-N and total N balance in soil fertilized with KNO3. Immobilization of NO3-N was very rapid in soil amended with glucose and sucrose followed by a remineralization of organic N and accumulation of mineral N. Cellulose caused a slow but continued immobilization and did not show net accumulation of mineral N during 8 weeks of incubation. At the end of incubation, a significant increase in total N and organic N content of the soil was observed which is perhaps attributable to the activity of free living N2 fixers. Although N losses seemed to have occurred at 100% WHC through denitrification in soil amended with glucose and sucrose, main cause of NO3 elimination was microbial immobilization.  相似文献   

11.
Three different types of compost, PM-5 (poultry manure compost), 338 (dairy cattle manure compost), and NVIRO-4 (alkaline-pH-stabilized dairy cattle manure compost), and irrigation water were inoculated with an avirulent strain of Salmonella enterica serovar Typhimurium at 10(7) CFU g(-1) and 10(5) CFU ml(-1), respectively, to determine the persistence of salmonellae in soils containing these composts, in irrigation water, and also on carrots and radishes grown in these contaminated soils. A split-plot block design plan was used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but with contaminated water applied) and five replicates for a total of 25 plots for each crop, with each plot measuring 1.8 x 4.6 m. Salmonellae persisted for an extended period of time, with the bacteria surviving in soil samples for 203 to 231 days, and were detected after seeds were sown for 84 and 203 days on radishes and carrots, respectively. Salmonella survival was greatest in soil amended with poultry compost and least in soil containing alkaline-pH-stabilized dairy cattle manure compost. Survival profiles of Salmonella on vegetables and soil samples contaminated by irrigation water were similar to those observed when contamination occurred through compost. Hence, both contaminated manure compost and irrigation water can play an important role in contaminating soil and root vegetables with salmonellae for several months.  相似文献   

12.
Composting of rice straw with poultry manure and oilseed rape cake and its effects on growth and yield of faba bean and soil properties was studied in pot experiments at Gifu University, Japan in 2001/2002. The composts reached maturity in 90 days, were rich in organic matter and mineral nutrients, had a high level of stability, and no phytotoxicity. The addition of compost (20-200 g pot(-1)) improved selected soil chemical (increased total N, total C and CEC), physical (decreased particle density) and biological (increased soil respiration rate) properties. Application of composts at a rate of 20 g pot(-1) significantly increased growth, yield, yield components and total crude protein of faba bean plants. The benefit of this compost without chemical fertilizer demonstrated the validity and possibility of sustainable agronomic performance of faba bean using locally available recycled organic materials.  相似文献   

13.
Effect of sunn hemp (Crotalaria juncea) hay amendment on nematode community structure in the soil surrounding roots of yellow squash (Cucurbita pepo) infected with root-knot nematodes was examined in two greenhouse experiments. Soils were from field plots treated long-term (LT) with yard-waste compost or no yard-waste compost in LT experiment, and from a short-term (ST) agricultural site in ST experiment. Soils collected were either amended or not amended with C. juncea hay. Nematode communities were examined 2 months after squash was inoculated with Meloidogyne incognita. Amendment increased (P < 0.05) omnivorous nematodes in both experiments but increased only bacterivorous nematodes in ST experiment (P < 0.05), where the soil had relatively low organic matter (<2%). This effect of C. juncea amendment did not occur in LT experiment, in which bacterivores were already abundant. Fungivorous nematodes were not increased by C. juncea amendment in either experiment, but predatory nematodes were increased when present. Although most nematode faunal indices, including enrichment index, structure index, and channel index, were not affected by C. juncea amendment, structure index values were affected by previous soil organic matter content. Results illustrate the importance of considering soil history (organic matter, nutrient level, free-living nematode number) in anticipating changes following amendment with C. juncea hay.  相似文献   

14.
A field experiment, lasting 14 months, was carried out in order to assess the effect of organic amendment and lime addition on the bioavailability of heavy metals in contaminated soils. The experiment took place in a soil affected by acid, highly toxic pyritic waste from the Aznalcóllar mine (Seville, Spain) in April 1998. The following treatments were applied (3 plots per treatment): cow manure, a mature compost, lime (to plots having pH < 4), and control without amendment. During the study two crops of Brassica juncea were grown, with two additions of each organic amendment. Throughout the study, the evolution of soil pH, total and available (DTPA-extractable) heavy metals content (Zn, Cu, Mn, Fe, Pb and Cd), electrical conductivity (EC), soluble sulphates and plant growth and heavy metal uptake were followed. The study indicates that: (1) soil acidification, due to the oxidation of metallic sulphides in the soil, increased heavy metal bioavailability; (2) liming succeeded in controlling the soil acidification; and (3) the organic materials generally promoted fixation of heavy metals in non-available soil fractions, with Cu bioavailability being particularly affected by the organic treatments.  相似文献   

15.
Soil amendment with organic materials (crop residues animal manure, and green manure) reportedly has positive effects on soil properties, from acidity to plant-nutrient availability. To examine that hypothesis, an incubation study was conducted to assess the changes in some chemical properties of three different tropical soils (Andisol, Ultisol, and Oxisol) amended with chicken manure and green manure (Leucaena leucocephala) at the rate of 10tha(-1). The results showed that organic amendments raised soil pH and EC, regardless of the type of manure used. Manuring lowered the concentrations of Mehlich-3 extractable Ca, P, Mn and Si in all soils and decreased the concentration of Mg in the Ultisol and Oxisol. However, manure amendment led to increases in the concentrations of Mg and K in the Andisol. Organic amendments caused a decrease in KCl extractable Al. Initial soluble C levels were highest in the Oxisol (60mumolg(-1)) and lowest in the Andisol (20mumolg(-1)). The concentration of soluble C decreased exponentially with duration of incubation. Three low molecular weight organic molecules (acetic acid, catechol and oxalic acid) out of the eight tested were found in all manure-amended soils. This study quantified the release of some Al chelating organic acids, the reduction of exchangeable Al, and the changes in major plant-nutrients when organic materials were added to nutrient poor, tropical acid soils.  相似文献   

16.
Ding LJ  Xiao HA  Wu JS  Ge TD 《应用生态学报》2010,21(7):1759-1765
为了进一步探明红壤旱土磷素微生物固持的机理,采用室内模拟培养试验研究了微生物类群对红壤旱土团聚体(0.2~2mm)磷素转化的作用.结果表明:在培养90d期间,添加稻草处理能显著提高红壤旱土团聚体的微生物生物量碳、生物量磷、提取磷(Olsen法)和有机磷的含量.在培养前期(5~30d),与添加稻草处理比较,稻草+真菌抑制剂(放线菌酮)、稻草+细菌抑制剂(四环素+链霉素硫酸盐)处理团聚体微生物生物量碳含量分别降低10.5%~31.8%和6.8%~11.6%,前者的降低幅度显著大于后者(P0.01),此后加入抑菌剂处理团聚体微生物生物量碳基本保持稳定.添加细菌抑制剂处理团聚体微生物生物量磷含量在培养5~20d期间比加真菌抑制剂处理高10.0%~28.8%,差异显著(P0.01).表明真菌和细菌均参与红壤旱土团聚体磷素的固持,但真菌的作用明显大于细菌.  相似文献   

17.
Phytotoxicity of compost-amended soil is related to carbon mineralization associated with compost decomposition. The objective of this research was to determine if compost carbon mineralization potential, estimated using compost respiration rate measurements, could be combined with carbon mineralization kinetic models to predict phytotoxicity of compost-amended soil. First-order, second-order, and Monod kinetic models that include compost carbon mineralization potential, compost amendment rate, incubation time, and temperature were developed and compared for their ability to predict carbon mineralization kinetics. Experiments utilized two soil types amended with 0%, 5%, and 50% (v/v) food waste and green waste composts, incubated at 20 degrees C, 25 degrees C, 30 degrees C, 35 degrees C, and 45 degrees C for model development and under a diurnal temperature cycle from 20 degrees C to 30 degrees C for model validation. For most cases, a first-order model had an equivalent or better fit to the data than the other models. Mineralizable carbon estimated using the first-order model was significantly correlated to the probability of phytotoxicity in compost-amended soil.  相似文献   

18.
The co-composting of exhausted olive-cake with poultry manure and sesame shells was investigated. These organic solid wastes were watered by the confectionary wastewater which is characterized by its high content of residual sugars raising its COD. Four aerated windrows were performed to establish the effects of confectionary by-products on the compost process. Different mixtures of the agro-industrial wastes were used. During the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 70 days. The final products were characterized by their relatively high organic matter content, and low C/N ratio of 14-17. The humidification of the windrows with the wastewater seemed to have accelerated the composting process in comparison to a windrow humidified with water. In addition, the organic matter degradation was enhanced to reach 55-70%. The application of the obtained composts to soil appeared to significantly improve the soil fertility. Indeed, field experiments showed an increase in potato yield; the production was 30.5-37.5 tons ha(-1), compared to 30.5 tons ha(-1) with farm manure.  相似文献   

19.
Three different types of compost, PM-5 (poultry manure compost), 338 (dairy cattle manure compost), and NVIRO-4 (alkaline-pH-stabilized dairy cattle manure compost), and irrigation water were inoculated with an avirulent strain of Salmonella enterica serovar Typhimurium at 107 CFU g−1 and 105 CFU ml−1, respectively, to determine the persistence of salmonellae in soils containing these composts, in irrigation water, and also on carrots and radishes grown in these contaminated soils. A split-plot block design plan was used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but with contaminated water applied) and five replicates for a total of 25 plots for each crop, with each plot measuring 1.8 × 4.6 m. Salmonellae persisted for an extended period of time, with the bacteria surviving in soil samples for 203 to 231 days, and were detected after seeds were sown for 84 and 203 days on radishes and carrots, respectively. Salmonella survival was greatest in soil amended with poultry compost and least in soil containing alkaline-pH-stabilized dairy cattle manure compost. Survival profiles of Salmonella on vegetables and soil samples contaminated by irrigation water were similar to those observed when contamination occurred through compost. Hence, both contaminated manure compost and irrigation water can play an important role in contaminating soil and root vegetables with salmonellae for several months.  相似文献   

20.
Compost has been proposed as a means of simultaneously diverting organic materials from landfills while producing a valuable product that improves tilth, organic matter content and nutrient supply of agricultural soils. Composts manufactured from different source materials may have markedly different properties however, even if they meet all regulatory requirements. We compared the capacity of composts made from three different combinations of organic wastes (horse manure and bedding, mink farm wastes, municipal solid waste (MSW) and sewage sludge) along with clarifier solids from a chemo-thermomechanical pulp mill, to enhance the growth of tomato (Lycopersicon esculentum L.) seedlings grown in nutrient-poor organic potting soil. Germination and seedling emergence of tomatoes, cress (Lapidium sativum L.) or radish (Raphanus sativus L.) were tested to assess phytotoxicity of the four amendments. Mink farm compost and horse manure compost stimulated root and shoot growth of tomato seedlings but MSW compost and pulp mill solids were strongly inhibitory. MSW compost and unamended potting soil also inhibited seedling emergence and pulp mill solids produced stunting and deformities in radish and cress seedlings. Both toxic constituents and nutrient imbalances may be responsible for the growth-inhibiting effects of these amendments. Application of pulp mill solids to agricultural soil without composting may lead to deleterious effects on vegetable crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号