首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recovery of metals from the polymetallic sea nodules at the pilot plant at National Metallurgical Laboratory, Jamshedpur, India has generated a highly toxic effluent. This effluent contains several metals like Mn, Cu, Zn, Fe, Pb, Cr, and Cd that pollute the neighboring water bodies when discharged. Hence detoxification of this effluent was practiced using two plants: Lemna minor and Azolla pinnata for 7 days. During investigation A. pinnata removed 96% of Mn, 97% of Cu, 98% of Zn, 70% of Fe, 96% of Pb, 93% of Cr, 78% of Cd, and was comparatively more effective than L. minor which removed 94% of Mn, 86% of Cu, 62% of Zn, 74% of Fe, 84% of Pb, 63% of Cr, 78% of Cd. During the 7 days of experiment chlorophyll content decreased by 51% and 59% in A. pinnata and L. minor respectively. Based on our findings we can suggest that these two plants have wide range of metal retention potentialities hence can be of routine use for purification of toxic effluents.  相似文献   

2.
This study was conducted to assess the pollutant uptake capability of water lettuce (Pistia stratiotes L.) in terms of bioaccumulation, enrichment, and translocation of heavy metals grown in sugar mill effluent. Results showed that the maximum fresh weight (328.48 ± 2.04 gm kg?1), total chlorophyll content (2.13 ± 2.03 mg g?1 fwt), and relative growth rate, RGR (11.89 gg?1 d?1) of P. stratiotes were observed at 75% concentration of the sugar mill effluent after 60 days of phytoremediation experiment. The bioaccumulation factor (BF) of different heavy metals was greater than 1 with 50% and 75% concentrations of sugar mill effluent and this indicated that P. stratiotes was hyperaccumulator or phytoremediator of these metals. The enrichment factor (EF < 2 for Cu, Fe, Cr, Pb, Zn, and Mn) and (EF > 2 for Cd) indicated that P. stratiotes mineral enrichment deficient and it moderately enriched the different heavy metals. Moreover, translocation factor (TF) was less than 1 which indicated the low mobility of metals in different parts (root and leaves) of P. stratiotes after phytoremediation. Therefore, P. stratiotes can be used for phytotreatment of sugar mill effluent up to 50% to 75% concentrations and considered as hyperaccumulator aquatic plant for different heavy metals and other pollutants from the contaminated effluents.  相似文献   

3.
This paper presents the results of a preliminary study on the effects of sinusoidal magnetic fields on the growth and degradation potential of Flavobacterium species in paper mill effluents. The paper presents a brief account of the experimental set-up, protocol and the essential parameters employed. The study was carried out using a pure colony of Flavobacterium species and subjecting them to Sinusoidal Magnetic Fields (SMF) at different frequencies, intensities and duration of exposure in order to obtain the “frequency window” of optimum response. The organisms were subjected to 1 Hz (100 nT, 1500 nT and 4000 nT) for 5 hours per day for 3, 6, 9, 12, 15, 18 and 20 days and to 10 Hz (100 nT, 1500 nT and 4000 nT) for 5 hours per days for 3, 6, 9, 12, 15, 18 and 20 days. The organism has been primarily analyzed for its efficacy in the treatment of paper mill effluent by using a sinusoidal magnetic field. The growth kinetics of the bacterium with the application of sinusoidal magnetic fields was studied. As judged from the physico-chemical properties of the effluent, Flavobacterium species was found to have a four fold increase with respect to growth when exposed to SMF of 10 Hz, 100 nT for 30 hrs (5 hours per day for 6 days). The BOD, COD, lignin, phenol and protein content were found reduced in the effluent using SMF treated cells.

Pre-treatment of Flavobacterium species with Sinusoidal Magnetic Fields (SMF) appears to result in more effective degradation of the paper mill effluents.  相似文献   

4.
Cross-flow microfiltration was shown to retain Saccharomyces cerevisiae biomass utilized for heavy metal bioaccumulation. The passage of metal-laden influent through a series of sequential bioaccumulation systems allowed for further reductions in the levels of copper, cadmium, and cobalt in the final effluent than that afforded by a single bioaccumulation process. Serial bioaccumulation systems also allowed for partial separation of metals from dual metal influents. More than one elemental metal cation could be accumulated simultaneously and in greater quantities than when a single metal was present in the effluent (Cu(2+) 0.43 mmol, Cu(2+) + Cd(2+) 0.67 mmol, and Cu(2+) + Co(2+) 0.83 mmol/g yeast dry mass when the initial concentration of each of the metal species was 0.2 mmol.L(-1)). Co-accumulation of two different metal cations allowed higher total levels of bioaccumulation than found with a single metal. The flux rate was 2.9 x 10(2) L.h(-2)mum(-2) using a polypropylene microfiltration membrane (0.1 mum pore size) at 25 degrees C. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
Microalgae are extensively used in the remediation of heavy metals like iron. However, factors like toxicity, bioavailability and iron speciation play a major role in its removal by microalgae. Thus, in this study, toxicity of three different iron salts (FeSO4, FeCl3 and Fe(NO3)3) was evaluated towards three soil microalgal isolates, Chlorella sp. MM3, Chlamydomonas sp. MM7 and Chlorococcum sp. MM11. Interestingly, all the three iron salts gave different EC50 concentrations; however, ferric nitrate was found to be significantly more toxic followed by ferrous sulphate and ferric chloride. The EC50 analysis revealed that Chlorella sp. was significantly resistant to iron compared to other microalgae. However, almost 900 μg g?1 iron was accumulated by Chlamydomonas sp. grown with 12 mg L?1 ferric nitrate as an iron source when compared to other algae and iron salts. The time-course bioaccumulation confirmed that all the three microalgae adsorb the ferric salts such as ferric nitrate and ferric chloride more rapidly than ferrous salt, whereas intracellular accumulation was found to be rapid for ferrous salts. However, the amount of iron accumulated or adsorbed by algae, irrespective of species, from ferrous sulphate medium is comparatively lower than ferric chloride and ferric nitrate medium. The Fourier transform infrared spectroscopy (FTIR) analysis shows that the oxygen atom and P?=?O group of polysaccharides present in the cell wall of algae played a major role in the bioaccumulation of iron ions by algae.  相似文献   

6.
Effluent from La Zarza-Perrunal, a mine on the Iberian Pyrite Belt, was chosen to be geomicrobiologically characterized along a 1,200-m stream length. The pH at the origin was 3.1, which decreased to 1.9 at the final downstream sampling site. The total iron concentration showed variations along the effluent, resulting from (i) significant hydrolysis and precipitation of Fe(III) (especially along the first reach of the stream) and (ii) concentration induced by evaporation (mostly in the last reach). A dramatic increase in iron oxidation was observed along the course of the effluent [from Fe(III)/Fe(total) = 0.11 in the origin to Fe(III)/Fe(total) = 0.99 at the last sampling station]. A change in the O(2) content along the effluent, from nearly anoxic at the origin to saturation with oxygen at the last sampling site, was also observed. Prokaryotic and eukaryotic diversity throughout the effluent was determined by microscopy and 16S rRNA gene cloning and sequencing. Sulfate-reducing bacteria (Desulfosporosinus and Syntrophobacter) were detected only near the origin. Some iron-reducing bacteria (Acidiphilium, Acidobacterium, and Acidosphaera) were found throughout the river. Iron-oxidizing microorganisms (Leptospirillum spp., Acidithiobacillus ferrooxidans, and Thermoplasmata) were increasingly detected downstream. Changes in eukaryotic diversity were also remarkable. Algae, especially Chlorella, were present at the origin, forming continuous, green, macroscopic biofilms, subsequently replaced further downstream by sporadic Zygnematales filaments. Taking into consideration the characteristics of this acidic extreme environment and the physiological properties and spatial distribution of the identified microorganisms, a geomicrobiological model of this ecosystem is advanced.  相似文献   

7.
A key reason inhibiting commercialization of algal oil as biodiesel feedstock, is cultivation cost. For this reason, the usability of 19 readily available industrial effluents (autoclaved and non-autoclaved) to support heterotrophic growth and lipid accumulation was evaluated using six mixed algal cultures. Autoclaved whey effluent was the best with 14.32 g biomass L?1, 13.23% lipids, resulting in a lipid production of 1.91 g lipids L?1. Biomass production and lipid accumulation were in many cases inverse, e.g. mixed algal culture termed TUT4 accumulating 84.25% lipids on autoclaved acid mine drainage, with very little biomass produced. Biomass production was dependent on the effluent type, whereas the lipid accumulation was influenced mostly by the specific mixed algal cultures. The fatty acid composition of the algal oil (fish cannery and whey effluents) showed high saturation, leading to acceptable cetane numbers, kinematic viscosity, good oxidative stability, but poor cold flow properties.  相似文献   

8.
Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L?1) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely “‘Salvinia molesta and Pistia stratiotes.” After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.  相似文献   

9.
Phytoremediation potential of L. minor for cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) from two different types of effluent in raw form was evaluated in a glass house experiment using hydroponic studies for a period of 31 days. Heavy metals concentration in water and plant sample was analyzed at 3, 10, 17, 24, and 31 day. Removal efficiency, metal uptake and bio-concentration factor were also calculated. Effluents were initially analyzed for physical, chemical and microbiological parameters and results indicated that municipal effluent (ME) was highly contaminated in terms of nutrient and organic load than sewage mixed industrial effluent (SMIE). Results confirmed the accumulation of heavy metals within plant and subsequent decrease in the effluents. Removal efficiency was greater than 80% for all metals and maximum removal was observed for nickel (99%) from SMIE. Accumulation and uptake of lead in dry biomass was significantly higher than other metals. Bio-concentration factors were less than 1000 and maximum BCFs were found for copper (558) and lead (523.1) indicated that plant is a moderate accumulator of both metals. Overall, L. minor showed better performance from SMIE and was more effective in extracting lead than other metals.  相似文献   

10.
The zebrafish embryo test is a widely used bioassay for the testing of chemicals, effluents and other types of environmental samples. Oxygen depletion in the testing of sediments and effluents is especially important and may be a confounding factor in the interpretation of apparent toxicity. In order to identify oxygen levels critical to early developmental stages of zebrafish, oxygen consumption of zebrafish embryos between 0 and 96h post-fertilization, minimum oxygen levels required by the embryos for survival as well as the effects of oxygen depletion following exposure to model sediments were determined. No significant effects on zebrafish embryo development were observed for oxygen concentrations between 7.15 and 3.33mg/L, whereas at concentrations between 3.0and 2.0mg/L minor developmental retardations were observed, yet without any pathological consequences. Oxygen concentrations lower than 0.88mg/L were 100% lethal. In the sediment contact tests with zebrafish embryos, native sediments rich in organic materials rapidly developed strongly hypoxic conditions, particularly at the sediment-water interface (0 to 500μm distance to the sediment).  相似文献   

11.
The present study deals with the microcosm study of Fe (Iron) phytoremediation using Eichhornia crassipes, Lemna minor, Pistia stratiotes and Salvinia cucullata species collected from the Loktak Lake, a Ramsar Site which exists in north-eastern India (an Indo-Burma hotspot region). Efficiency of these four macrophytes was compared using different Fe concentrations of 1 mg L?1, 3 mg L?1 and 5 mg L?1 for 4 days, 8 days and 12 days, respectively. E. crassipes was the most efficient macrophyte whereas L. minor was the least efficient. E. crassipes removed the highest percentage of Fe, i.e. 89% from 1 mg L?1, 81.3% from 3 mg L?1 and 73.2% from 5 mg L?1 in 12-day experiment.  相似文献   

12.

Background and aims

Iron plaque on roots has been hypothesized to be an effective restraint on the uptake of arsenic (As) by rice plants. Evaluating the formation of iron plaque and its effect on As uptake by various rice cultivars is valuable because selecting low As uptake rice cultivars results in reduced risks associated with rice consumption. This study examines iron plaque formation and its effect on As uptake by different genotypes of rice cultivars.

Methods

Hydroponic cultures were conducted in phytotron at day 25/night 20°C and the rice seedlings in fifth-leaf age were treated with Fe (II) at the levels of 0 and 100 mg L?1 in the Kimura B nutrient solutions for 14 days. The amount of iron plaque formation of 28 rice cultivars was determined by using the DCB extractable Fe of roots. Four cultivars representing high and low iron plaque formation capability, from indica and japonica respectively, were selected out of the 28 cultivars and processed for Fe and As treatments. After Fe treatments for 4 days, the seedlings were fed with As (III) at levels of 0, 0.5, and 1 mg L?1 for another 10 days. We were thus able to determine the amounts of iron plaque formation and the As content in iron plaque, roots, and shoots of the four tested cultivars.

Results

Iron plaque formation capability differed among tested twenty-eight rice cultivars. Feeding As to four tested cultivars enhanced iron plaque formation on roots; the As uptake by roots and shoots was decreased by the addition of Fe. Both the retention of As on iron plaque and the decrease of As uptake by the addition of Fe varied among tested cultivars and were not correlated with the iron plaque formation capability.

Conclusions

Iron plaque can sequestrate As on the roots and reduce rice’s As uptake. However, other factors also influence the As uptake, namely the differences in binding affinity of iron plaque to As, the existent As species in the rhizosphere, and the uptake capability of various As species by rice plants. These factors should also be considered when selecting low As uptake rice cultivars.  相似文献   

13.
Abstract

The main objective of this work was to study the capacity of bioaccumulation of copper in an upflow anaerobic sludge blanket (UASB) reactor, for the treatment of acid mine drainages (AMD). UASB reactor of 0.8 L was fed with sodium acetate, the organic loading rate (OLR) was set at 2.0gCOD/Ld, and experiments were performed in the reactor during 115 days. After 30 days, the COD removal efficiency was 90%. In the stationary stage, the higher production methane was 0.253 L/Ld. The reactor was added with 20 mgCu(II)/L during 30 days. The copper bioaccumulation was 98% and it was accumulated gradually in sludge until reaching a 61.6 mgCu(II)/gTS. The toxicity study demonstrated that the copper concentration at which the level of specific methanogenic activity (SMA) of the biogranules was reduced to 50% of the control (IC50), was 280 mgCu(N)/L  相似文献   

14.
Christ RA 《Plant physiology》1974,54(4):582-585
The Fe requirements of four monocotyledonous plant species (Avena sativa L., Triticum aestivum L., Oryza sativa L., Zea mays L.) and of three dicotyledonous species (Lycopersicum esculentum Mill., Cucumis sativus L., Glycine maxima (L.) Merr.) in hydroponic cultures were ascertained. Fe was given as NaFe-EDDHA chelate (Fe ethylenediamine di (O-hydroxyphenylacetate). I found that the monocotyledonous species required a substantially higher Fe concentration in the nutrient solution in order to attain optimum growth than did the dicotyledonous species. Analyses showed that the process of iron uptake was less efficient with the monocotyledonous species. When the results obtained by using chelated Fe were compared with those using ionic Fe, it was shown that the inefficient species were equally inefficient in utilizing Fe3+ ions. However, the differences between the efficient and the inefficient species disappeared when Fe2+ was used. This confirms the work of others who postulated that Fe3+ is reduced before uptake of chelated iron by the root. In addition, it was shown that reduction also takes place when Fe is used in ionic form. The efficiency of Fe uptake seems to depend on the efficiency of the root system of the particular plant species in reducing Fe3+. The removal of Fe from the chelate complex after reduction to Fe2+ seems to present no difficulties to the various plant species.  相似文献   

15.
The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.  相似文献   

16.
A pilot scale rotating biological contactor (RBC) was set up near a coal mine at Hollywood, Penn. to evaluate ferrous iron, Fe(II), oxidation. Acid drainage from this mine entered the treatment unit which consisted of four sets of plastic disks affixed to a rotating central shaft. As the disks rotated half immersed in the flowing mine water, iron-oxidizing bacteria, presumed to be Thiobacillus ferrooxidans, colonized the disk surfaces with an average population of 70,000 cells/cm2 and mediated the transformation of Fe(II) to the less soluble ferric state, Fe(III). Kinetics of microbial Fe(II) oxidation were established during an eleven month period of continuous pilot operation and were found to follow a concentration dependent first order relationship. Operating at an optimum disk rotation rate and hydraulic loadings of 2.7 and 5.4 gal/day-ft2 (0.11 and 0.22 m3/day-m2) resulted in the oxidation of an average 240 mg/liter influent Fe(II) to produce effluent Fe(II) of 2 and mg/liter, respectively. The RBC appears potentially useful as a first step in the total treatment of acid mine drainage.  相似文献   

17.
A minor electrophoretically fast component was found in ferritin from iron-loaded rat liver in addition to a major electrophoretically slow ferritin similar to that observed in control rats. The electrophoretically fast ferritin showed immunological identity with the slow component, but on electrophoresis in SDS it gave a peptide of 17.3 kDa, in contrast with the electrophoretically slow ferritin, which gave a major band corresponding to the L-subunit (20.7 kDa). Thus the electrophoretically fast ferritin resembles that reported by Massover [(1985) Biochim. Biophys. Acta 829, 377-386] in livers of mice with short-term parenteral iron overload. The electrophoretically fast ferritin had a lower iron content (2000 Fe atoms/molecule) than the electrophoretically slow ferritin (3000 Fe atoms/molecule). Removal and re-incorporation of iron was possible without effect on the electrophoretic mobility of either ferritin species. On subcellular fractionation the electrophoretically fast ferritin was enriched in pellet fractions and was the sole soluble ferritin isolated from iron-laden secondary lysosomes (siderosomes). The amount and relative proportion of the electrophoretically fast species increased with iron loading. Haemosiderin isolated from siderosomes was found to contain a peptide reactive to anti-ferritin serum and corresponding to the 17.3 kDa peptide of the electrophoretically fast ferritin species. Unlike the electrophoretically slow ferritin, the electrophoretically fast ferritin did not become significantly radioactive in a 1 h biosynthetic labelling experiment. We conclude that the minor ferritin is not, as has been suggested for mouse liver ferritin, 'a completely new species of smaller holoferritin that represents a shift in the ferritin phenotype' in response to siderosis, but a precursor of haemosiderin, in agreement with the proposal by Richter [(1984) Lab. Invest. 50, 26-35] concerning siderosomal ferritin.  相似文献   

18.
The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose.  相似文献   

19.
Multiple effluent streams may flow into a single receiving stream making it difficult to understand the effects of a single effluent source or the interactions between effluents. In this study, we examined benthic community structure and function in an effluent stream formed by the release of treated mine water, in treated mine water that had been used as a water source for flow-through aquaculture and below the confluence of the two. This study demonstrated that macroinvertebrate communities, while taxonomically simple, developed in treated mine water. The addition of aquaculture effluent to the treated mine water allowed colonization by additional taxa, increased leaf decomposition rates and may have conferred resistance to a turbidity event. Ecosystem responses were mediated by the surrounding terrestrial environment. In shaded conditions macroinvertebrate densities could be as much as 10× higher and the taxa were dominated by simuliids and chironomids, while in open conditions filamentous algae flourished and the taxa were dominated by hydroptilids and chironomids. Consequently, consideration of stream processes that promote preferred ecological processes, such as macroinvertebrate production and organic matter processing, when siting effluent streams may reduce impacts on receiving streams.  相似文献   

20.
This study reports on the use of the estuarine amphipod Corophium multisetosum in acute toxicity testing. The species was successfully acclimated to the laboratory and was used in a water-only whole effluent 96 h acute bioassay and in a 10 days whole estuarine sediment test. C. multisetosum response was compared to other species in 96 h bioassays, testing boiling cork effluent and iron filings lixiviates. The amphipod showed high sensitivity and the results were similar to those obtained with others species namely, the freshwater cladoceran Daphnia magna, the estuarine amphipod Gammarus chevreuxi and the seawater annelid Sabellaria alveolata. In a 10 days static exposure to natural impacted estuarine sediments, the response of the species was compared to a fertilization bioassay with the sea-urchin Paracentrotus lividus. Both species indicated the same sediment samples as the most potentially toxic. These samples were collected in sites where the resident macrofauna benthic community is also the most affected, with strong reduction of the species richness, abundance and biomass. The results revealed that C. multisetosum presents high potential to be used in routine acute toxicity testing in the estuarine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号