首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The persulfate anion (S2O8 2?) is a strong oxidant with a redox potential of 2.01 V. However, when mixed with iron (II), it is capable of forming the sulfate radical (SO4 ?.) that has an even higher redox potential (E o = 2.6 V). In these studies the sulfate radical was investigated to determine if it was a feasible oxidant for the destruction of BTEX and PAH compounds found in MGP contaminated soil. The sulfate radical was generated by either the sequential addition of iron (II) solutions or by a single addition of a citric acid chelated iron (II) solution. The sequentially added iron destroyed 86% of the total BTEX concentration and 56% of the total PAH concentration in the soil. The citric acid chelated iron destroyed 95% of the total BTEX concentration and 85% of the total PAH concentration. A second dose of persulfate and citric acid chelated iron (II) resulted in the destruction of 99% of the total BTEX concentration and 92% of the total PAH concentration. In both the sequential and chelated iron studies the lower molecular weight BTEX compounds were oxidized to a greater extent than the higher molecular weight BTEX compounds, whereas the oxidation of PAH compounds showed no preference to molecular weight.  相似文献   

2.
The objective of this research is to investigate Fenton and persulfate oxidation with zero-valent iron [Fe(0)] as a batch type ex-situ remediation technology for the treatment of diesel-contaminated soil. Results from batch experiments indicate that Fe(0) is a better catalyst for H2O2 and persulfate than Fe2+ for the enhancement of Fenton and persulfate oxidation in a batch system. Maximum removal was obtained after 12 h when 1 and 2 g of Fe(0) were added to hydrogen peroxide (250 mg/L) and persulfate (250 mg/L), respectively, in a soil-water system. As the amounts of Fe(0) and persulfate were increased three times at the optimal ratio, the removal of total petroleum hydrocarbon (TPH) was enhanced accordingly. More than 90% of the TPH was removed in 3 h, and the treated soil met the Korean regulation level (500 mg/kg) for TPH. Increased amounts of Fe(0) and hydrogen peroxide (up to 10 g and 1250 mg/L, respectively) also significantly enhanced degradation under the optimal conditions. The results of our study suggest that Fe(0)-assisted Fenton and persulfate oxidation in a batch reactor may be an alternative option to treat diesel-contaminated soil.  相似文献   

3.
Due to the toxicity and prevalence of BTEX contaminants (benzene, toluene, ethylbenzene, and xylenes) at hazardous waste sites, approaches for their remediation are of interest, especially those that particularly address benzene, which is often the limiting factor for achieving regulatory cleanup at these contaminated sites. In situ chemical oxidation (ISCO) is a viable technology for BTEX destruction, and hydrogen peroxide and sodium persulfate are two oxidants of interest for BTEX treatment.

Laboratory studies were conducted to compare BTEX contaminant destruction and oxidant persistence for these two oxidants and for varied methods of oxidant activation/propagation. Additionally, studies were performed to compare contaminant destruction and oxidant persistence in laboratory contaminant spike systems vs. field site contaminant systems. Finally, contaminant destruction and oxidant persistence in field porous media with varied characteristics were evaluated. Contaminant and oxidant concentrations were measured at multiple time points over a three-week reaction period in each oxidant and oxidant activation/propagation system.

Under the comparable conditions evaluated here, sodium persulfate systems demonstrated greater BTEX contaminant destruction and greater oxidant persistence than hydrogen peroxide systems. FeSO4 and citric acid activation of sodium persulfate resulted in greater BTEX destruction and greater oxidant persistence than pH adjustment or hydrogen peroxide activation in both laboratory contaminant spike systems and field gas condensate systems. Additionally, results indicate that the response of the contaminant(s) and oxidant (extent and rate of depletion) are both contaminant-and porous media type-dependent.  相似文献   


4.
The use of activated charcoal for enzyme recovery and purification was investigated and the optimum activated charcoal concentration and the minimum contact time needed for efficient decolorization of an alkaline protease preparation in terms of surface adsorption and retention of enzyme activity were found to be 7.5 g l–1 and 30 min, respectively. Elevated temperatures had a greater influence on the rate of decolorization which was faster when the protease was refluxed at 60 °C for 10–15 min. These data suggest that the efficient adsorption characteristics of activated charcoal can be exploited for cost-effective downstream processing of alkaline proteases and possibly other enzymes.  相似文献   

5.
Exocytosis of myeloperoxidase (MPO) from activated neutrophils has been investigated in the presence of the anionic polysaccharide heparin. The optimal concentration of heparin (0.1 U/mL), which did not cause additional activation of cells (lack of augmentation of lysozyme exocytosis from specific and azurophilic granules), was determined. After preincubation of cells with heparin (0.1 U/mL) MPO exocytosis from neutrophils was stimulated by various activators (fMLP, PMA, plant lectins CABA and PHA-L) and was higher as compared to the effects of the activators alone. Experiments performed using MPO isolated from leukocytes have shown that heparin in the range of concentrations 0.1–50 U/mL had no effect on MPO peroxidase activity. Thus, the use of heparin at a concentration of 0.1 U/mL avoids the artifact caused by the “loss” of MPO due to its binding to neutrophils and increases the accuracy of the method of registration of degranulation of neutrophil azurophilic granules based on determination of the MPO concentration or its peroxidase activity in cell supernatants.  相似文献   

6.
The photon emission (chemiluminescence; CL) of catechin in the presence of active oxygen species (hydrogen peroxide, hydroxyl radical tert-butyl hydroperoxide and tert-butyl oxyl radical) and acetaldehyde was confirmed to occur non-enzymatically at room temperature in aqueous neutral conditions. The CL intensity [P] in the presence of active oxygen species (X), catalytic species (Y) and receptors (Z) is predicted by [P] = k [X] [Y] [Z]. The calculated photon constants (k) of 8 catechins and gallic acid were 8.23 × 106 M−2 s−1 counts ((−)-epigallocatechin), 2.78 × 106 ((−)-epigallocatechin gallate), 4.66 × 105 ((−)-gallocatechin gallate), 4.36 × 105 ((−)-gallocatechin), 2.70 × 105 ((−)-epicatechin), 6.44 × 104 ((−)-catechin), 5.85 × 104 ((−)-epicatechin gallate), 4.78 × 104 (gallic acid) and 3.54 × 104 ((−)-catechin gallate), respectively. The system of active oxygen species, catalytic species and receptors is proposed to be a scavenging mechanism for active oxygen species. In the presence of acetaldehyde, (−)-epigallocatechin (maximum k value among catechins tested) reacted with tert-BuOOH to form tert-BuOH as determined by HPLC analysis.  相似文献   

7.
The anaerobic metabolism of acetate was studied in sediments and groundwater from a gas condensate-contaminated aquifer in an aquifer where geochemical evidence implicated sulfate reduction and methanogenesis as the predominant terminal electron-accepting processes. Most-probable-number tubes containing acetate and microcosms containing either [2-14C]acetate or [U-14C]acetate produced higher quantities of CH4 compared to CO2 in the presence or absence of sulfate.14CH4 accounted for 70 to 100% of the total labeled gas in the [14C]acetate microcosms regardless of whether sulfate was present or not. Denaturing gradient gel electrophoresis of the acetate enrichments both with and without sulfate using Archaea-specific primers showed identical predominant bands that had 99% sequence similarity to members of Methanosaetaceae. Clone libraries containing archaeal 16S rRNA gene sequences amplified from sediment from the contaminated portion of the aquifer showed that 180 of the 190 clones sequenced belonged to the Methanosaetaceae. The production of methane and the high frequency of sequences from the Methanosaetaceae in acetate enrichments with and without sulfate indicate that aceticlastic methanogenesis was the predominant fate of acetate at this site even though sulfate-reducing bacteria would be expected to consume acetate in the presence of sulfate.  相似文献   

8.
过氧化氢加重铁对心肌的损伤作用及其机制   总被引:2,自引:4,他引:2  
Chen YY  Shen YL  Cao CM  Xu WH  Qian ZM  Xia Q 《生理学报》2001,53(3):175-182
采用Langendorff灌流心脏和酶解分离的心肌细胞为实验模型,研究铁对心肌的损伤作用,以及过氧化氢对铁的心肌作用的影响及其可能机制.结果显示(1)羟基喹啉铁复合物(Fe-HQ)引起分离心肌细胞舒张期缩短,心肌细胞的收缩幅度和速度降低,离体灌流心脏左室发展压(LVDP)、±dp/dtmax、心率、冠脉流量呈现双相变化;冠脉流出液中乳酸脱氢酶(LDH)、肌酸激酶(CK)释放量和心肌丙二醛(MDA)增高.(2)H2O2可加重Fe-HQ对心脏的损伤,冠脉流出液中LDH、CK释放量和心肌MDA增高,而LVDP、±dp/dtmax和心率明显降低.(3)还原型谷胱甘肽可对抗Fe-HQ+H2O2对心肌的损伤作用,DMSO对Fe-HQ+H2O2致离体心脏损伤无明显作用.结果提示,心肌细胞内铁增加可引起心肌功能受损,H2O2可加重铁对心肌的损伤作用,其主要机制可能与@OH无关,而主要与含巯基的蛋白质受损有关.  相似文献   

9.
从碱性果胶酶在纺织清洁生产中的应用条件出发,在60℃和pH 9.1左右,系统研究了不同稳定剂对提高碱性果胶酶的稳定性的影响。由此,得到了对酶稳定性作用较突出的添加剂以及复合稳定剂,较佳配方为乙酸钠6%(m/v)、MgCl2.2H2O 2%(m/v)。结果表明,添加稳定剂后的碱性果胶酶在棉织物精练中的应用特性得到了提高,达到了棉织物精练的需要。  相似文献   

10.
PinX1, a nucleolar protein of 328 amino acids, inhibits telomerase activity, which leads to the shortening of telomeres. The C-terminal region of PinX1 is responsible for its nucleolar localization and binding with TERT, a catalytic component of telomerase. A fraction of TERT localizes to the nucleolus, but the role of TERT in the nucleolus is largely unknown. Here, we report a functional connection between PinX1 and TERT regarding PinX1 stability. The C-terminal of PinX1205–328, a nucleolar fragment, was much more stable than the N-terminal of PinX11–204, a nuclear fragment. Interestingly, PinX1 was less stable in TERT-depleted cells and more stable in TERT-myc expressing cells. Stability assays for PinX1 truncation forms showed that both PinX11–328 and PinX1205–328, nucleolar forms, were more rapidly degraded in TERT-depleted cells, while they were more stably maintained in TERT-overexpressing cells, compared to each of the controls. However, PinX11–204 was degraded regardless of the TERT status. These results reveal that the stability of PinX1 is maintained in nucleolus in the presence of TERT and suggest a role of TERT in the regulation of PinX1 steady-state levels.  相似文献   

11.
In a previous work, a phenotype-specific accumulation of superoxide radical anions (O??2) after attack of the powdery mildew fungus (Blumeria [syn. Erysiphe] graminis f.sp. hordei) in near-isogenic barley (Hordeum vulgare L.) lines bearing different Mlx genes for resistance was described (Hückelhoven and Kogel, 1998). We have now a histochemical study of the pathogenesis-related O??2 generation in the systemic activated resistance (SAR) response induced in barley cv Pallas by the plant activator 2,6-dichloroisonicotinic acid (DCINA). SAR-specific defence was conducted prevalently characterized by penetration resistance. Fungal arrest was observed before haustorium formation by a highly localized cell wall reinforcement (effective papillae) and, in most cases, by a subsequent hypersensitive cell death (HR). No O??2 generation was found in association with these plant defence responses. However, a strong O??2 burst in the attacked epidermal cells was detected in the control plants which were not activated by DCINA. This burst coincided with cell wall penetration and subsequent contact of the pathogen with the host plasma membrane. A strong SAR-related O??2 burst was induced in the mesophyll tissue beneath the attacked and hypersensitively reacting epidermal cells in plants treated with DCINA. The accumulation of O??2 was confined to chloroplasts. The remarkable burst in mesophyll tissue was not followed by mesophyll-HR indicating that chloroplastic O??2 generation is not sufficient for the hypersensitive cell death. Since the same pattern of pathogenesis-related O??2 accumulation was identified for race-specific response mediated by the Mlg gene for powdery mildew resistance, the present data are consistent with the hypothesis that the SAR phenotype is a phenocopy of the Mlg-type resistance (Kogel et al., 1994).  相似文献   

12.
Rab5-dependent endosome fusion is sensitive to the phosphoinositide 3-kinase inhibitor, wortmannin. It has been proposed that phosphoinositide 3-kinase activity may be required for activation of rab5 by influencing its nucleotide cycle such as to promote its active GTP state. In this report we demonstrate that endosome fusion remains sensitive to wortmannin despite preloading of endosomes with stimulatory levels of a GTPase-defective mutant rab5Q79L or of a xanthosine triphosphate-binding mutant, rab5D136N, in the presence of the nonhydrolysable analogue XTPγS. These results suggest that activation of rab5 cannot be the principal function of the wortmannin-sensitive factor on the endosome fusion pathway. This result is extrapolated to all GTPases by demonstrating that endosome fusion remains wortmannin sensitive despite prior incubation with the nonhydrolysable nucleotide analogue GTPγS. Consistent with these results, direct measurement of clathrin-coated vesicle-stimulated nucleotide dissociation from exogenous rab5 was insensitive to the presence of wortmannin. A large excess of rab5Q79L, beyond levels required for maximal stimulation of the fusion assay, afforded protection against wortmannin inhibition, and partial protection was also observed with an excess of wild-type rab5 independent of GTPγS.  相似文献   

13.
N-(1-Arylethenyl)-2-chloroacetamides were synthesized and their herbicidal activities were tested. Among them, both 2-chloro-N-(2-methoxyethyl)-N-(2-methyl-1-phenylpropen-1-yl)acetamide and 2-chloro-N(2-ethoxyethyl)-N-(2-methyl-1-phenylpropen-1-yl)acetamide were found to be highly active against upland weeds.  相似文献   

14.
15.
The energy and activated oxygen metabolisms in male-sterile and fertile anthers of Hubei photoperiod-sensitive genic male-sterile rice (HPGMR)have been comparatively studied. Among the male-sterile anthers, lower total activities of cytochrome oxidase(COD), ATPase, peroxidase (POD), catalase (CAT) and superoxide dismutase(SOD) in six anthers of a spikelet were seen, which were equivalent to about 2–64%, 20–76%, 26–60%, 6–77%, 29–55%, respectively, of those of their fertile counterparts during different development stages of pollens. The sterile anthers lacked 1–5, 1, 1–2 isozyme bands of COD, POD and SOD, respectively, and also displayed lower content of ATP, higher contents of H202 and malondiald ehyde (MDA) and higher efficiency of O2- which were equivalent to about 14–77%, 152–424%, 153–238%, 230–340%, respectively, of those of their corresponding fertile ones. It is concluded that the physiological features of male-sterile anthers, viz. lower efficiency of oxidative phosphorylation, higher efficiency of O2 and H202 generation, weaker activity of scavenger system of activated oxygen and higher level of lipid peroxidation, are indicative of some relationship between abnormal energy, activated oxygen metabolisms in male-sterile anthers and male-sterility in HPGMR.  相似文献   

16.
We investigated the anaerobic biodegradation of 3-chlorobenzoate (3CBz) by microorganisms from an aquifer where chloroaromatic compounds were previously found to resist decay in the presence of sulfate. After a lengthy lag period, 3CBz was degraded in the presence of sulfate and concurrently with sulfate reduction. Chlorine removal from 2,5- or 3,5-dichlorobenzoates and the transient appearance of benzoate from 3CBz confirmed that reductive dehalogenation was the initial fate process for these substrates. Sulfate did not influence 3CBz degradation rates in acclimated enrichment cultures but accelerated the development of 3CBz degradation activity in fresh transfers. Benzoate degradation was more rapid in the presence of sulfate regardless of the enrichment history. Nitrate, sulfite, and a headspace of air inhibited 3CBz dehalogenation, while thiosulfate had no effect. Mass balance determinations revealed that 71 to 107% of the theoretically expected amount of methane was produced from 3CBz and benzoate oxidation in the absence of sulfate. In parallel cultures containing 15 mM sulfate, methanogenesis was reduced to 48 to 71% of that theoretically expected, while sulfate reduction accounted for 12 to 50% of the reducing equivalents. In either the presence or absence of sulfate, steady-state dissolved hydrogen concentrations were similar to those reported for sulfate-reducing or methanogenic environments, respectively. Molybdate inhibited sulfate reduction and 3CBz dehalogenation to a similar extent but did not affect benzoate biodegradation. Sulfate-dependent 3CBz biodegradation was not observed. We conclude that reductive dehalogenation and sulfate reduction occur concurrently in these enrichments and that the sulfate-dependent stimulation in fresh transfers was likely due to the acceleration of benzoate oxidation.  相似文献   

17.
A catalase preparation from a newly isolated Bacillus sp. was covalently immobilized on silanized alumina using glutaraldehyde as crosslinking agent. The effect of the coupling time of the enzyme-support reaction was determined in terms of protein recovery and immobilization yield and a certain balance point was found after which the activity recovery decreased. The activity profile of the immobilized catalase at high pH and temperature was investigated. The immobilized enzyme showed higher stabilities (214 h at pH 11, 30°C) at alkaline pH than the free enzyme (10 h at pH 11, 30°C). The immobilized catalase was inhibited by anionic stabilizers or surfactants added to the hydrogen peroxide substrate solution.  相似文献   

18.
It was shown with the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone that myeloperoxidase (MPO) in the presence of its substrates H2O2 and Cl- as well as activated neutrophils destroy tert-butyl hydroperoxide producing two adducts of O-centered radicals which were identified as peroxyl and alcoxyl radicals. Inhibitory analysis performed with traps of hypochlorite (taurine and methionine), free radical scavengers (2,6-di-tret-butyl-4-methylphenol and mannitol), and MPO inhibitors (salicylhydroxamic acid and 4-aminobenzoic acid hydrazide) revealed that the destruction of the hydroperoxide group in the presence of isolated MPO or activated neutrophils was directly caused by the activity of MPO: some radical intermediates appeared as a result of the chlorination cycle of MPO at the stage of hypochlorite generation, whereas the other radicals were produced independently of hypochlorite, presumably with involvement of the peroxidase cycle of MPO. The data suggest that the activated neutrophils located in the inflammatory foci and secreting MPO into the extracellular space can convert hydroperoxides into free radicals initiating lipid peroxidation and other free radical reactions and, thus, promoting destruction of protein-lipid complexes (biological membranes, blood lipoproteins, etc.).  相似文献   

19.
为了解海口市白沙门污水处理厂活性污泥中细菌抗生素耐性情况,采用平板分离技术分离、纯化细菌,并通过BIOLOG微生物鉴定系统对筛选到的细菌进行鉴定,同时采用Kirby-Bauer纸片琼脂扩散法进行药敏试验并进行抗生素耐性分析。本研究共分离到18株细菌,分属8个属,14个种,其中G+和G-均为9株。抗生素药敏性试验结果表明,所有菌株均耐药,菌株单重耐药率、双重耐药性及多重耐药性分别为50%、38.9%、和11.1%。菌株对9种常用抗生素:头孢他啶、环丙沙星、庆大霉素、链霉素、氨苄西林、红霉素、氯霉素、四环素、卡那霉素的耐药率分别为61.1%、0%、5.6%、16.7%、50%、16.7%、11.1%、0%、5.6%。综上所述,白沙门污水处理厂活性污泥中的细菌耐药性比较严重,存在潜在的环境生态和人畜健康风险。本研究揭示了当前白沙门污水处理厂活性污泥中细菌对常见抗生素耐药的严重现状,为建议污水处理厂加强出水及污泥中抗生素耐药性及耐药基因的检测并评估其生态影响提供基础,避免出水及污泥中的抗性菌和耐药基因可能带来的风险问题。  相似文献   

20.
Summary Effects of nonchelating and chelating agents at 10 mM on the serum-free culture of rat dermal fibroblasts were investigated. A strong iron-chelating agent, iminodiacetic acid (IDA), and a weak one, dihydroxyethylglycine (DHEG), decreased iron permeation into preconfluent fibroblasts. A weak iron-chelating agent, glycylglycine (GG), a nonchelating agent, N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES), and human apotransferrin (10 μg/ml) increased the permeation with time. Iron may be essential for survival of fibroblasts because subconfluent fibroblasts exposed to 100 μM FeSO4 in combination with transferrin, HEPES, or GG significantly decreased to release lactate dehydrogenase into the medium. Superoxide dismutase and dimethyl sulfoxide blocked the enzyme release, suggesting that superoxide and hydroxyl radical induce cellular damage but hydrogen peroxide (H2O2) generated by superoxide dismutation does not. GG significantly reduced H2O2 cytotoxicity. DHEG acted as a potent promoter of the iron-stimulated cellular damage if ascorbate or H2O2 was added to the medium. FeSO4 and FeCl3 (50 to 100 μM) individually combined with IDA maximally promoted fibroblast proliferation. Ascorbate increased formation of thiobarbituric acid-reactive substances from deoxyribose in the medium supplemented with FeSO4 and either IDA or DHEG. Conversely, ascorbate decreased the formation in the medium with FeSO4 and with or without other agents. Fibroblast proliferation may thus be stimulated through the active oxygen generation mediated by a redox-cycling between Fe3+ and Fe2+, which are dissolved in the medium at a high concentration, rather than through delivery of iron into the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号