首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The contamination of lead (Pb) is one of the main environmental problems on a global scale. This study assessed the potential of native metallophytes growing on the Song Tho Pb mine in Kanchanaburi province, Thailand, by a field survey. Plants and the associated soil samples were collected. Total Pb concentrations were analyzed by a flame atomic absorption spectrophotometer after a microwave-assisted acid digestion. While total Pb concentrations of top soils varied from 4881 to 16,720 mg/kg, those in soil around the roots ranged from 421 to 48,883 mg/kg. A total of 12 species belonging to eight families accumulated Pb concentrations in roots (47–32,633 mg/kg) which were higher than those in shoots (non-detected values – 1489 mg/kg). Bidens pilosa, with Pb accumulation in shoots > 1000 mg/kg and translocation factor (TF) > 1, could be useful in phytoextraction as a hyperaccumulator. Thysanolaena latifolia and Mimosa pudica with bioconcentration factor > 1 and TF < 1 could be useful in phytostabilization as excluders. So far, not many Pb hyperaccumulators are reported. The results from this study proposed a new candidate, B. pilosa, for Pb extraction. The potential use of these three phytoremediators should be further investigated using hydroponic and pot experiments.  相似文献   

2.
The application of chelating agents for phytoextraction has demonstrated that it is an efficient method to activate heavy metals in polluted soil. We conducted pot experiments using soybean, which has been considered an indicator plant, to study the effects of EDTA and EDDS on heavy metals’ activation, and on the soybean. The study results indicated that EDDS decreased the chlorophyll content of the leaves and increased the malondialdehyde (MDA) content of the soybean. EDTA also decreased the chlorophyll content of the leaves. EDDS had a strong influence on activating Cu (2583-8900-fold) and Zn. The addition of 5 mmol kg?1 of EDDS markedly increased the uptake of metals. Compared with the control, EDDS increased the Cu uptake (100-205-fold). EDTA greatly increased the activation of heavy metals; it also increased Cu uptake in a concentration-dependent manner. EDTA also increased the biological concentration factor (BCF) and the transfer factor (TF) in a concentration-dependent manner. The BCF and the TF reached maximum levels when 5 mmol kg?1 EDDS was applied to the pots.  相似文献   

3.
Coronopus didymus was examined in terms of its ability to remediate Pb-contaminated soils. Pot experiments were conducted for 4 and 6 weeks to compare the growth, biomass, photosynthetic efficiency, lead (Pb) uptake, and accumulation by C. didymus plants. The plants grew well having no visible toxic symptoms and 100% survivability, exposed to different Pb-spiked soils 100, 350, 1500, and 2500 mg kg?1, supplied as lead nitrate. After 4 weeks, root and shoot concentrations reached 1652 and 502 mg Pb kg?1 DW, while after 6 weeks they increased up to 3091 and 527 mg Pb kg?1 DW, respectively, at highest Pb concentration. As compared to the 4 week experiments, the plant growth and biomass yield were higher after 6 weeks of Pb exposure. However, the chlorophyll content of leaves decreased but only a slight decline in photosynthetic efficiency was observed on exposure to Pb at both 4 and 6 weeks. The Pb accumulation was higher in roots than in the shoots. The bioconcentration factor of Pb was > 1 in all the plant samples, but the translocation factor was < 1. This suggested C. didymus as a good candidate for phytoremediation of Pb-contaminated soils and can be used for future remediation purposes.  相似文献   

4.
Leaching of metals due to enhanced mobility during ethylenediaminetetraacetic acid (EDTA)-assisted phytoextraction has been demonstrated as one of the potential hazards associated with this technology. This study was conducted to determine phytoextraction efficiency of Chenopodium album L. for Pb and EDTA-assisted (1.5, 3, and 9 mmol kg?1) phytoextraction and potential for leaching of Pb. The results demonstrated that BCFshoot (bioconcentration factor) was relatively higher than the BCFroot. Translocation factor in the shoot was higher than the roots. Thus, plant species would be applicable for Pb phytoextraction. EDTA enhanced translocation of Pb from roots to shoots. Lead content in the plant parts was maximum in the shoot and root of 9EDTA and 3EDTA, respectively. However, there was no significant difference between 3EDTA and 9EDTA. Lead concentration in the plant parts increased significantly from vegetative stage into flowering stage. Lead content taken up by the plant was lowest when EDTA was applied in a single dose. Therefore, application of EDTA in several increments rather than a single split reduced the leaching risk. Totally, optimum phytoextraction was observed when 3 mmol kg?1 EDTA was added in triple dosage 60 days after the plant cultivation under triple application mode. The results indicated the plant has the potential for Pb phytoextraction, but it should not be used unless the biomass containing such accumulated metal is removed for disposal. Significant improvement over current ETDA-assisted phytoextraction of Pb may be possible but should be implemented cautiously because of environmental risk.  相似文献   

5.
In this study an ornamental plant of Althaea rosea Cavan was investigated for its potential use in the removal of Cd, Ni, Pb and Cu from an artificially contaminated soil. Effect of two different chelating agents on the removal has also been studied by using EDTA (ethylenediaminetetracetic acid) and TA (tannic acid). Both EDTA and TA have led to higher heavy metal concentration in shoots and leaves compared to control plants. However EDTA is generally known as an effective agent in metal solubilisation of soil, in this study, TA was found more effective to induce metal accumulation in Althaea rosea Cavan under the studied conditions. In addition to this, EDTA is toxic to some species and restraining the growth of the plants. The higher BCF (Bio Concentration Factor) and TF (Translocation Factor) values obtained from stems and leaves by the effects of the chemical enhancers (EDTA and TA) show that Althaea rosea Cavan is a hyper accumulator for the studied metals and may be cultivated to clean the contaminated soils.  相似文献   

6.
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soil amendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1,1,10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05, 0.25, 0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (approximately soluble fraction), extraction with 1 M NH4OAc at pH 7 (approximately exchangeable fraction), and extraction with 0.5 M NH4OAc + 05 M HOAc + 0.02 M EDTA at pH 4.65 (approximately potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but a strong exponential decrease of labile metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annuus will be presented.  相似文献   

7.
两种温度下模拟氮沉降对陆稻与稗草竞争的影响   总被引:1,自引:0,他引:1  
在昼/夜温度为35 ℃/25 ℃和30 ℃/20 ℃条件下,研究了模拟氮沉降对稗草和陆稻生长及竞争关系的影响.结果表明:35 ℃/25 ℃条件下,每年输入4 g·m-2氮处理,稗草和陆稻地上部分生物量分别比对照增加29.18%和27.80%,稗草吸收氮和磷量分别增加87.33%和49.73%,而陆稻吸收氮和磷量无显著变化.在30 ℃/20 ℃条件下,每年输入2、4、6 g·m-2氮处理后,稗草地上部分生物量分别比对照增加48.99%、72.68%和36.18%,分蘖数分别增加111.11%、122.22%和144.44%,稗草植株氮和磷吸收量分别增加108.88%、129.22%、134.29%和16.53%、65.05%、22.47%,而陆稻均无显著变化.在30 ℃/20 ℃条件下,氮沉降显著增加了稗草与陆稻地上部分生物量的比值,但在35 ℃/25 ℃条件下影响不显著.表明氮沉降增加可能会提高稗草而降低陆稻的竞争力,而且在温度较低的情况下,这种趋势更明显.  相似文献   

8.
Abstract

Phytoremediation with vetiver was investigated in relation to heavy metal contaminated soil in Thailand. The work compared the performance of two species of vetiver named Songkhla 3 (Chrysopogon zizaniodes) and Prachuap Khiri Khan (Chrysopogon nemoralis) in absorbing lead, zinc, and cadmium in contaminated soils. Toxicity Characteristic Leaching Procedure (TCLP), and Allium tests were conducted to determine toxicity of treated soil. Ethylenediaminetetraacetic acid (EDTA) was also used to increase heavy metals concentration in solution in soil, which led to an increase in translocation and bioaccumulation factors. In general, results showed that concentration of heavy metals decreased in soil and increased in both the shoots and roots of vetivers during a 4-month treatment period. TCLP results indicated that the concentration of zinc and cadmium in contaminated soil was reduced over treatment time, and significantly increased after EDTA was applied. To confirm vetiver performance in phytoremediation, Allium testing showed that remained heavy metals in treated soils had no effect on nucleus aberration. Songkhla 3 and Prachuap Khiri Khan showed similar trends in their ability to remediate lead, zinc, and cadmium from contaminated soil. Both species could accumulate higher concentrations of heavy metals in their shoots and roots over time, and with EDTA application.  相似文献   

9.
Soil contamination by heavy metals is a serious problem to humans due to its high level of toxicity. The heavy metal lead (Pb) is commonly used in industries and if the disposal of residues that contain this element is not done properly may result in tragic consequences to the organisms. In this experiment we assessed the potential of a forrage leguminous, Canavalia gladiata, to phytoremediate lead-contaminated soil under mycorrhizal influence. The experimental design was composed of 4 Pb doses (0, 250, 500, and 1000 mg kg?1 of soil) and the plants were inoculated or uninoculated with arbuscular mycorrhizal fungi (AMF). We observed that the nodulation was severely affected by the presence of Pb independently of the mycorrhizal status; most of the elements analyzed were affected independently of the mycorrhizal status with exception of P. The mycorrhizal colonization was able to restrict the entrance of Pb in plants under high concentrations of Pb but promoted it's accumulation in both organs under intermediate concentrations of this element. Besides the mycorrhization did not promote plant growth under Pb stress, the use of this plant may be considered to be used for phytostabilization purposes.  相似文献   

10.
High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0.1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0.01, 0.05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.  相似文献   

11.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

12.
Tarek M. Galal  Hanaa S. Shehata 《Flora》2013,208(10-12):556-561
The present study aimed to evaluate the morphological characteristics and biomass of Desmostachya bipinnata and their relation to the environmental variables in three main habitats (canal banks, railway and roadside shoulders) where it is found in Egypt. In addition, the ability of this plant is evaluated to accumulate nutrients and heavy metals in its aboveground shoots. Twenty five quadrats (1 m × 1 m per quadrat) were selected along five sites representing the different habitats of D. bipinnata for this study. The aboveground shoots displayed considerable morphological variations, differing in the different habitats. The above ground biomass, number of spikes and leaves, rachis length and diameter, leaf length, width and area, leaf sheath length, and spike length and diameter were in the order: road sides > canal banks > railway shoulders. A regression equation: biomass = (67.37 × density) + 108.2, was used to estimate the shoot biomass from the plant growth density. Metal uptake capability from soil to grass is in the order Fe > Zn > Cu > Mn, and all of them are in safe concentration ranges. These heavy metals had a transfer factor more than unity, which indicates that D. bipinnata is a powerful accumulator for heavy metals. In addition, the plant shoots exhibit high accumulation of inorganic and organic nutrients.  相似文献   

13.
Heavy metals are known to have adverse effects on soil ecosystems, while soil enzyme activities are sensitive to soil pollution. This study investigated the combined effects of Cu, Zn and Pb on the activities of invertase (IN), urease (U) and alkaline phosphatase (ALP) in soil obtained from the vicinity of a wellhead protection area via an orthogonal array (OA) design method. The experimental results showed the following: (1) Cu showed higher inhibition on the activities of all three enzymes than Zn and Pb when three metals were all present in the soil sample. IN activity, U activity and ALP activity decreased as the levels of Cu increased, and ranged from 15.9% to 55.7%, 3.57% to 78.6%, and 3.23% to 75.3%, respectively. Their lowest values were found in samples at 35 days with 400 mg/kg Cu. (2) Zn and Pb had different influences on the activities of the three enzymes. The lowest IN activity (the highest reduction 58.0%) and U activity (76.8%) were observed when Zn was at the concentration of 100 mg/kg after 35 days, whereas the highest inhibitory function of Zn on ALP activity (75.3%) was at 300 mg/kg after 7 days. When the concentration of Pb increased from 35 to 350 mg/kg, the activities of IN (62.5%) and U (69.6%) were most inhibited at 35 days and 14 days, respectively. However, when Pb was at the concentration of 500 mg/kg after 14 days, ALP activity (72.0%) showed the lowest value. (3) With respect to the three hydrolases in this study, ALP was the most sensitive to the two-variable interactive effects of Cu, Zn and Pb, especially Cu?×?Pb. It is concluded that the soil ALP activity may be a sensitive tool for assessing additive toxic effect on soil biochemical parameters. To provide more information about the potential ecological risk of chemicals on soil ecosystems, much more should be done to clearly determine the mechanisms of the combined effects of heavy metals in soil.  相似文献   

14.
商品大米中Cd、Pb、Cr的污染状况及健康风险评价   总被引:3,自引:0,他引:3  
为了解本地商品大米中重金属的污染情况,采用微波消解法和电感耦合等离子体原子发射光谱(ICP-AES)法,对144个大米样品进行Cd、Pb和Cr含量的检测,采用单项污染指数和内梅罗综合指数法对其污染状况和健康风险进行分析评价。结果表明,样品中Cd、Pb和Cr的超标率分别为0.69%、27.78%和34.03%。无等级大米中3种重金属的超标率高于有等级大米,但差异不显著。本土商品大米样品中Cd的含量显著高于外省样品,Pb含量差异不显著,Cr的含量显著低于外省样品。144个样品中处于安全级别的样品仅占63.89%。健康风险评价结果显示,当地居民通过食用大米实际摄入Cd和Pb的量都低于FAO/WHO推荐的每人每日的允许摄入量,不存在严重的健康风险,但却存在Cr的健康风险问题。  相似文献   

15.
Vetiver (Chrysopogon zizanioides) is a fast-growing, high biomass producing plant employed for environmental rehabilitation. The study evaluated the effects of arbuscular mycorrhizal fungi (AMF) on the growth and trace element phytoextracting capabilities of vetiver in a substrate containing coalmine wastes in Southern Brazil. AMF included Acaulospora colombiana, Acaulospora morrowiae, Acaulospora scrobiculata, Dentiscutata heterogama, Gigaspora margarita, and Rhizophagus clarus. Among those, A. colombiana, G. margarita, and R. clarus promoted higher growth. AMF stimulated average increments in the accumulated P of 82% (roots), 194% (shoots first harvest—90 days) and 300% (shoots second harvest—165 days) and affected the phytoextraction of trace elements by vetiver, with larger concentrations in the roots. Plants inoculated with A. colombiana, A. morrowiae, and A. scrobiculata, in addition to the control, presented the highest levels of Cu and Zn in the roots. Overall, G. margarita stimulated the highest production of biomass, and, therefore, showed the most significant levels of trace elements in the plants. This work shows the benefits of certain AMF (especially A. morrowiae, G. margarita, and R. clarus) for the production of biomass and P uptake by vetiver, demonstrating the potential of those species for the rehabilitation of coal-mine-degraded soils.  相似文献   

16.
A study has been made of the leaching of Cd, Zn, Pb, and Cu in three representative soils within the zone affected by the spill from a pyrite mine in Aznalcollar (Sevilla, Spain) employing packed soil columns. According to the breakthrough and cumulative leaching curves, the relative mobilities of the different toxic elements in the columns are as follows: Cd> Zn> Cu> Pb. The effect of leaching on the distribution of metals as a function of depth using intact soil cores was also studied. The results showed that the soils themselves have a good capacity for immobilizing the soluble fraction of the elements from the spilled mud. This capacity varied as follows: clayey soil with a high carbonate content > clayey soil with a moderate carbonate content > sandy-clay loam soil with a low carbonate content. However, sandy soils with a low carbonate content could pose a risk to groundwater if initial contamination was high. These results could be considered during the evaluation of remedial technologies for the immobilization of soil metals.  相似文献   

17.
Jandl  Robert  Kopeszki  Hubert  Glatzel  Gerhard 《Plant and Soil》1997,189(2):245-255
The aboveground biomass built up annually by Allium ursinum (L.) contains similar amounts of nutrients as the foliage of mature Fagus sylvatica (L.) stands. The decomposition of the A. ursinum stand in early summer provides N rich forage for grazing mesofauna, especially favouring collembolans and accelerating mineralization of soil organic matter. Short term decreases of soil pH had no negative effect on populations of collembolans. Synergistic effects from soil fauna and microbes may accelerate nitrogen release from decomposing leaf litter. A positive feed back may have emerged. High animal abundance and diverse mesofauna populations are capable of high rates of litter fragmentation. Consequently, favourable conditions for microorganisms are created and allow high rates of mineralization and release of nutrients. Our data show that substantial amounts of nitrogen are lost from the system. Undisturbed forest ecosystems are considered to recycle mineralized nitrogen efficiently though. But temporal uncoupling of the N cycle due to microbial activity and delayed or decreased N uptake of higher plants can cause enhanced leaching even from undisturbed systems. The tendency to loose nutrients is apparent from high nitrate concentrations in the soil solution throughout the year. When nutrient losses from A. ursinum subsystems are considered, lateral nutrient imports from adjacent parts of the ecosystem have to be taken into account. If lateral import does not counterbalance losses, maintenance of the soil nutrient status must occur by weathering or a decline is to be expected.  相似文献   

18.
NaCl and CaCl2 are frequently used as deicing agents during the winter season. The present study compares the effect of these deicing salts on salt injury on spruce trees (Picea abies sp.). From two field experiments carried out for ten weeks during the winter period of 1986–1987, and a total dose of 1.5 kg m−2 NaCl, CaCl2 or a 75/25 NaCl/CaCl2 mixture, it was found that the presence of calcium clearly reduced the salt injury as was indicated by salt tolerance ratings. These ratings corresponded well to the Cl concentrations found in needles and twigs. Though an equal dose of Cl was given, in the presence of CaCl2 the uptake of Cl was inhibited. Surely the role of calcium on ion permeability in salinized soil should have its effect, together with the regulatory role that calcium has on ion accumulation and transport. Furthermore it was found that the climatic conditions and the calcium status of the soil only have an effect on the time of appearance of the injury.  相似文献   

19.
We examined whether long-term Cd exposure leads to beneficial changes in the cultivable endophytic bacteria present in the seeds of Agrostis capillaris. Therefore the cultivable seed endophytes of Agrostis capillaris growing on a long-term Cd/Ni-contaminated plot (Cd/Ni seeds) were compared with those originating from a non-contaminated plot (control seeds). We observed plant- and contaminant-dependent effects on the population composition between control and Cd/Ni seeds. Also differences in phenotypic characteristics were found: endophytes from Cd/Ni seeds exhibited more ACC deaminase activity and production of siderophores and IAA, while endophytes from control seeds, very surprisingly, showed more metal tolerance.

Finally, the 3 most promising seed endophytes were selected based on their metal tolerance and plant growth promoting potential, and inoculated in Agrostis capillaris seedlings. In case of non-exposed plants, inoculation resulted in a significantly improved plant growth; after inoculation of Cd-exposed plants an increased Cd uptake was achieved without affecting plant growth. This indicates that inoculation of Agrostis with its seed endophytes might be beneficial for its establishment during phytoextraction and phytostabilisation of Cd-contaminated soils.  相似文献   

20.
The concentrations of Fe, Zn and Co were determined in up to five successive needle age classes in 54 individual Norway spruce trees from eight different sites (soil pH 3.1–7.7). Fe concentrations (12–25 μg in needles from the current year) were lower than most published values, due to the removal of surface contamination prior to analysis. Fe showed a significant positive correlation with Al. Successive needle age classes either had constant values or showed an increase for Fe concentrations; individual trees on a given site were rather uniform in their behaviour. Zn concentrations were 19–40 μg/g. On acid sites, they showed a positive correlation with total soil concentrations. The majority of trees showed decreasing Zn concentrations in successive needle age classes, but constant or increasing concentrations were also found; site homogeneity was less than with Fe. Co concentrations differed between trees on a neutral soil (12 ng/g) and on acid soils (41–174 ng/g). They showed a significant positive correlation with Mn needle concentrations. The changes of Co with needle age in most, but not all, trees were similar to those of Zn. The different changes of Fe, Zn and Co with needle age may be due to a different retranslocation. A modest retranslocation of Fe as opposed to a high retranslocation of Zn and Co (in most trees) is consistent with the observed behaviour. Received: 10 May 1999 / Accepted: 8 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号