首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, molecular dynamics simulation is used to investigate the adsorption of an anticancer drug, doxorubicin, on bundles of functionalized single-walled carbon nanotubes (SWNTs) in an aqueous solution. Carboxylic group has been selected as the functional group. Molecular dynamics (MD) simulations are performed for both separated systems containing a SWNT bundle and a functionalized carbon nanotube bundle, and results are compared with existing experimental data. MD results show that doxorubicin can be adsorbed on CNTs using different methods such as entrapment within CNT bundle, attachment to the side wall of the CNT, and adsorption on the CNT inner cavity. For functionalized CNT, the adsorption of drugs on the functional groups is essential for predicting the enhancement of drug loading on the functionalized nanotubes. Furthermore, the adsorption behavior of doxorubicin on CNTs is fitted with Langmuir and Freundlich isotherm models. The results show that Langmuir model can predict the adsorption behavior of doxorubicin on CNTs more accurately than Freundlich model does. As predicted by this isotherm model, the adsorption process of doxorubicin on CNTs is relatively difficult, but it can be improved by increasing the functional groups on the CNTs surface.  相似文献   

2.
Carbon nanotube (CNTs) is a new alternative for efficient drug delivery and it has a great potential to change drug delivery system profile in pharmaceutical industry. One of the important advantage of CNTs is their needle-like, cylindrical shape. This shape provides a high surface area for multiple connections and adsorption onto for millions of therapeutic molecules. CNTs can be internalized by cells via endocytosis, passive diffusion and phagocytosis and release the drug with different effects like pH and temperature. The acidic nature of cancer cells and the susceptibility of CNTs to release the drug in the acidic environment have made it a promising area of research in cancer drug delivery. In this research, we investigated cell viability, cytotoxicity and drug delivery in breast cancer cell line by designing non-covalent single walled carbon nanotubes (SWNT)–doxorubicin (DOX) supramolecular complex that can be developed for cancer therapy. Applied high concentrations of DOX loaded SWNTs changed the actin structure of the cells and prevented the proliferation of the cells. It was showed that doxorubicin loaded SWNTs were more effective than free doxorubicin at relatively small concentrations. Once we applied same procedure for short and long (short: 1–1.3 µm; long: 2.5–4 µm) SWNTs and compared the results, more disrupted cell structure and reduction in cell proliferation were observed for long CNTs. DOX is bounded more to nanotubes in basic medium, less bound in acidic environment. Cancer cells were also examined for concentration at which they were effective by applying DOX and it was seen that 3.68 µM doxorubicin kills more than 55% of the cells.  相似文献   

3.
This paper presents the findings of a study on adsorption of dichlorodiphenythreechloroethen (DDT) and polychlorinated biphenyls (PCBs) on three nanomaterials including Multi walled Carbon Nanotube (MWNT), nano-clay and nano-alumina. DDT and PCBs are of significant concern due their high toxicity and long environmental half-lives. Experiments were conducted using batch adsorption procedures at different DDT and PCBs concentrations, from 10 to 60 mg/L. The amounts of MWNT, nano-clay and Nano-alumina used were 0.25%, 0.50%, 0.75%, 1%, 2% and 10%. The adsorption of PCBs solution onto the MWNT, nano-clay and nano-alumina was characterized by an initial rapid adsorption which eventually became constant within 22, 20, and 17 hours, respectively. The adsorption of DDT solution onto the MWNT, nano-clay and nano-alumina was also characterized by an initial rapid adsorption which gradually became constant within 22, 22 and 16 hours, respectively. Results of this study indicated that MWNT was a better adsorbent material compared to nano-clay and nano-alumina for both contaminants in this study. While at 10% of MWNT 88.9% and 77% of DDT and PCB were removed by MWNT, respectively. The effect of pH and temperature were also investigated.  相似文献   

4.
Batch experiments were conducted to investigate the adsorption behavior of Tween 80 in the systems composed of Tween 80, CdCl2, and/or DDT. The results show that Cd2+ from CdCl2 is the functional fraction influencing the adsorption of Tween 80 to soil, rather than Cl?. Moreover, DDT can induce the increase of the critical micelle concentration (CMC) of Tween 80, which further impacts the Tween 80 adsorption behavior. The Tween 80 adsorption to soil in the Cd2+-DDT coexisted system follows the Langmuir isotherm, as in the Tween 80-Cd2+ or -DDT systems. Cd2+ and/or DDT decrease(s) the adsorption capacity of Tween 80 to soil, and the magnitude of decrease is dependent on the concentration of coexisting pollutants. Although DDT has a stronger inhibitory effect on Tween 80 adsorption than Cd2+ under the same DDT/Cd2+ concentrations, the coexistence of Cd2+ and DDT has an antagonistic effect on the adsorption of Tween 80. This effect is impacted by the concentrations of the coexisting pollutants, and is a result of the complex interaction among the three pollutants.  相似文献   

5.
The adsorption performance of chitosan (CS) hydrogel beads (CSBs) generated by sodium dodecyl sulfate (SDS) gelation with multi-walled carbon nanotube (CNT) impregnation was investigated for Congo red removal as a model anionic dye. CNT-impregnated CSBs were prepared by four different strategies for dispersing CNTs: (a) in CS solution (CSBN1), (b) in SDS solution (CSBN2), (c) in CS solution containing cetyltrimethylammonium bromide (CTAB) (CSBN3), and (d) in SDS solution for gelation with CTAB-containing CS solution (CSBN4). It was observed from FE-SEM study that depending on nature of CNT dispersion, CNTs were found on the outer surface of CSBN2 and CSBN4 only. The adsorption capacity of the CSBs varied with the strategy used for CNT impregnation, and CSBN4 exhibited the highest maximum adsorption capacity (375.94 mg/g) from the Sips model. The lowest Sips maximum adsorption capacity by CSBN3 (121.07 mg/g) suggested significant blocking of binding sites of CS by CNT impregnation.  相似文献   

6.
The adsorption of biomolecules on the walls of carbon nanotubes (CNTs) in an aqueous environment is of great importance in the field of nanobiotechnology. In this study, molecular dynamics (MD) simulations were performed to understand the mechanical vibrational behavior of single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) under the physical adsorption of four important biomolecules (L-alanine, guanine, thymine, and uracil) in vacuum and an aqueous environment. It was observed that the natural frequencies of these CNTs in vacuum reduce under the physical adsorption of biomolecules. In the aqueous environment, the natural frequency of each pure CNT decreased as compared to its natural frequency in vacuum. It was also found that the frequency shift for functionalized CNTs as compared to pure CNTs in the aqueous environment was dependent on the radius and the number of walls of the CNT, and could be positive or negative.  相似文献   

7.
Summary Five soils of increasing specific surface area (SSA) were loaded to five levels of contamination with Cd, Pb and Cu, and bean plants (Phaseolus vulgaris L.) were grown on the soils for 30 days. A linear correlation was found between the concentration of Cd in the soil solutions and the amount absorbed by the plant per gram root material for four out of the five soils, and, in the case of Cu, for all five soils. Quantitatively, there was insufficient Cd or Cu in the soil solution to account for plant uptake of these metals. The amount of Cd absorbed by plants could also be related to the adsorption density (concentration/SSA soil) of the metal in four of the five soils, whereas the Cu content of plants could be related to the adsorption density of all five soils. It is thought that the metals were removed from the soil solution by root absorption and replenished by metal cations adsorbed onto surface sites in the soil. Consideration of the adsorption density of these metals in the soil may be a useful means to determine the permissible limits for heavy metal application for a wide range of soils. Lead uptake was significantly correlated to total Pb in soils, but not to the adsorption density or soil solution concentrations. The possible interpretation of the results are discussed.  相似文献   

8.
The presence of perfluoroalkyl acids (PFAAs) in aquatic environments is a cause of concern, due to their toxicity, possible ecological impact and adverse effects in man. The release of these pollutants into receiving water bodies occurs primarily through the discharge of untreated wastewater and industrial effluents. Consequently, there is a need to remediate wastewater containing these compounds before its discharge. In this review, the occurrence of PFAAs in water streams is reviewed, with the aim of providing in-depth information on the harmful effects arising through exposure to these pollutants by both man and the environment. One viable strategy for the removal of PFAAs from wastewaters is adsorption. This technique is discussed in relation to a number of conventional adsorbents and they are compared with the behaviour of a more effective adsorbent, namely, carbon nanotubes (CNTs). In particular, various functionalization strategies can increase the efficiency of CNTs for the removal of PFAAs. Sorption of PFAAs onto CNTs demonstrates good removal efficiencies and equilibrium is attained faster than with conventional adsorbents. This is attributed to the inherent properties of CNTs, such as large surface area/porosity, and the ease with which new functional groups are introduced onto the walls of the tubes. The adsorption mechanism of PFAAs is primarily enhanced through electrostatic interactions; however, other intermolecular forces, such as hydrogen bonding, hydrophobic interactions and ion-exchange, also play a role. This review aims at providing information on the occurrence and fate of PFAAs and the interactions involved in their removal from aqueous solutions by CNTs.  相似文献   

9.
The adsorption of chlorpyrifos and TCP (3,5,6, trichloro-2-pyridinol) was determined in four soils (Mollisol, Inceptisol, Entisol, Alfisol) having different specific surface areas (19–84 m2 g?1) but rather similar organic matter content (2.4–3.5%). Adsorption isotherms were derived from batch equilibration experiments at 25°C. After liquid-liquid extraction, the chlorpyrifos and TCP concentrations in the solution phase were determined by gas chromatography with an electron capture detector. Adsorption coefficients were calculated using the Freundlich adsorption equation. High KF coefficients for chlorpyrifos (15.78) and TCP (6.54) were determined for the Entisol soil, while low KF coefficients for chlorpyrifos (5.32) and TCP (3.93) were observed in the Alfisol soil. In all four soils, adsorption of chlorpyrifos was higher than that of TCP. A surface complexation model, the constant capacitance model, was well able to fit the adsorption isotherms of both chlorpyrifos and TCP on all four soils. The results showed that specific surface area affected adsorption of both chlorpyrifos and TCP. Among the soil properties, specific surface area could be a better indicator than organic matter content alone for adsorption of chlorpyrifos and TCP by soils that contained low organic matter.  相似文献   

10.
The aim of this study was to select a bacterial strain able to degrade 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), and to use it for bioaugmentation in order to decontamination soil. Advenella Kashmirensis MB-PR (A. Kashmirensis MB-PR) was isolated from DDT contaminated soil, and the degradation ability of DDT by this strain in the mineral salt medium was screened by gas chromatography. The efficiency of degradation was 81% after 30 days of bacterial growth. The study of intermediary products during the degradation of DDT showed the appearance and accumulation of DDD and DDE, which emerged from the first days of the experiment. Other metabolites were detected at a lower number of chlorine atoms, such as DBH. DNA samples were isolated and screened for the linA gene, encoding dehydrochlorinase. The bioaugmentation by A. Kashmirensis MB-PR of polluted sterile soil showed that 98% of DDT disappeared after 20 days of experience. This study demonstrates the significant potential use of A. Kashmirensis MB-PR for the bioremediation of DDT in the environment.  相似文献   

11.
Bioremediation of DDT-Contaminated Soils: A Review   总被引:2,自引:0,他引:2  
The insecticide 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT) has been used extensively since the 1940s for control of agricultural pests, and is still used in many tropical countries for mosquito control. Despite a ban on DDT use in most industrialized countries since 1972, DDT and its related residues (DDTr) persist in the environment and pose animal and human health risks. Abiotic processes such as volatilization, adsorption, and photolysis contribute to the dissipation of DDTr in soils, often without substantial alteration of the chemical structure. In contrast, biodegradation has the potential to degrade DDTr significantly and reduce soil concentrations in a cost-effective manner. Many bacteria and some fungi transform DDT, forming products with varying recalcitrance to further degradation. DDT biodegradation is typically co-metabolic and includes dechlorination and ring cleavage mechanisms. Factors that influence DDTr biodegradation in soil include the composition and enzymatic activity of the soil microflora, DDTr bioavailability, the presence of soil organic matter as a co-metabolic substrate and (or) inducer, and prevailing soil conditions, including aeration, pH, and temperature. Understanding how these factors affect DDTr biodegradation permits rational design of treatments and amendments to stimulate biodegradation in soils. The DDTr-degrading organisms, processes and approaches that may be useful for bioremediation of DDTr-contaminated soils are discussed, including in situ amendments, ex situ bioreactors and sequential anaerobic and aerobic treatments.  相似文献   

12.
Su Y  Xie Q  Yang Q  Tu X  Cao Z  Jia X  Su Z  Zhang Y  Meng W  Yao S 《Biotechnology progress》2007,23(2):473-479
Electrochemical quartz crystal impedance (QCI) technique was utilized to monitor in situ the adsorption of rutin (RT) onto a carbon nanotubes (CNTs)-modified gold electrode and to study the binding process of solution hemoglobin (Hb) to RT immobilized on the electrode. Time courses of the QCI parameters including crystal resonant frequency were simultaneously obtained during the RT adsorption and Hb-RT binding. In contrast to the negligible RT adsorption at a bare gold electrode, the modification by CNTs notably enhanced the amount of adsorption, and almost all of the adsorbed RT molecules were found to be electroactive. On the basis of the frequency response from the binding of adsorbed RT to solution Hb and the diminished electroactivity of adsorbed RT after the formation of the electrochemically inactive RT-Hb adduct, the average binding molar ratio of adsorbed RT to Hb was estimated to be 23.9:1, and the association constant (Ka) for the binding was estimated to be 2.87 x 106 (frequency) and 3.92 x 106 (charge) L mol-1, respectively. Comparable results were obtained from fluorescence quenching measurements in mixed solutions containing RT of fixed concentration and Hb of varying concentrations, demonstrating that the interfacial RT here behaved equivalently in the RT-Hb binding activity compared to that in solution. This work may have presented a new and general protocol involving CNTs to study many other electroactive natural antioxidants or drugs that are at the interface or in solution, their binding with proteins or other biomolecules, and changes of their antioxidant activity after the binding.  相似文献   

13.
In this study we have investigated the morphology and electrical characteristics of protein layers non-covalently adsorbed onto an irregular network of carbon nanotubes (CNT). The layer system presents a prototype for an ion-sensitive field-effect transistor based on CNT-networks. The complementary characterization techniques AFM and ellipsometry give the overall morphology of the functionalized layer system and in combination with concentration dependent measurements a detailed image of the adsorption dynamics. The advantage of CNT-based FETs is their huge surface area, which makes them extremely sensitive even to weak adsorption processes. The here-presented comparative investigations clearly show that significant changes in the transport properties of the CNTs occur much below one monolayer. This sensitivity is an important condition for the future development of efficient biodevices with optimal performance parameters for the detection of pathogenic microorganisms.  相似文献   

14.
Abstract

Remediation of toxic metals by bacteria offers a relatively inexpensive and efficient way for the decontamination of soil and associated environments. The present study was carried out to investigate the surface characteristics, adsorption, and remobilization of Cd and Cu on bacteria and their composites with soil colloidal components, which are the most active constituents in soils. The bacterial strain NTG-01 (Enterobacter aerogenes), which was both Cd- and Cu-resistant, was isolated from a heavily Cu-contaminated soil of the mining area in Daye suburb of Hubei Province, China. Batch laboratory experiments with NTG-01 and soil colloids were performed to quantify adsorption of Cu and Cd. The surface area of kaolinite and the soil colloids from an Alfisol and Ultisol increased by 3.0–8.8% after the introduction of the bacteria. In the presence of bacterial cells, the negative charges of soil colloid systems increased and the positive charges decreased, shifting pH from 4.0 to 6.5. Our results demonstrate that bacteria promote the adsorption of Cd and Cu by kaolinite and soil colloid systems. However, the heavy metals bound by the bacterial composites could also be easily released by NH4NO3 and EDTA. Caution should be taken when using such bacterial strains in bioremediation of heavy metal-contaminated soils.  相似文献   

15.
Abstract

In this study, the adsorption of Hydroxyurea (HU) onto the inner and outer surfaces of boron nitride and carbon nanotubes (CNTs) was investigated using the density functional theory calculations and molecular dynamics (MDs) simulations in aqueous solution. The values of the adsorption energy show that HU molecule is preferentially adsorbed inside of boron nitride and CNTs with the molecular axis parallel to the tubes axis, which means that the cavity of nanotubes is favorable for encapsulation of this drug. Also, it was found that the HU/boron nitride nanotube (BNNT) system is more stable than the HU/CNT system. The stability of the complexes of HU/ BNNT attributed to the formation of the intermolecular hydrogen bonds between the H atoms of HU molecule and the N atoms of BNNT, which is confirmed by Bader’s quantum theory of atoms in molecules. The natural bond orbital analysis shows the charge transfers occur from HU molecule to nanotubes in all complexes. Moreover, the adsorption of HU molecule on the surfaces of the nanotubes was investigated by explicit water models. Also, the adsorption behavior of HU on the functionalized boron nitride and CNTs is investigated to design and develop new nanocarriers for biomedical applications. Furthermore, MDs simulations are examined in the presence of one and two drug molecules. The obtained results illustrate that the lowest value of Lennard–Jones (L–J) energy between drug and nanotubes exist in the simulation system with two drug molecules.  相似文献   

16.
We carried out molecular dynamics simulations to study the adsorption of all the 20 amino acids (AAs; aromatic, polar and non-polar) on the surface of chiral, zigzag and armchair single-walled carbon nanotubes. The adsorption was occurring in all systems. In the aromatic AAs, the π–π stacking and the semi-hydrogen bond formation cause a strong interaction with the carbon nanotubes (CNTs). We also investigated the chirality, length and diameter dependencies on adsorption energies. We found that all AAs have more tendency to adsorption on the chiral and zigzag CNTs over the armchair. The results show that increasing both the diameter and the length causes the enhancement of the adsorption energy. But, the effect of the length is more than of the diameter. For example, the adsorption energy of Trp on the surface of CNT (4,1), with 2 nm length, is 20.4 kcal/mol. When the length of CNT becomes twice, the adsorption energy increases by 24 ± 0.3%. But by doubling the diameter, the adsorption energy increased only by 9.8 ± 0.25%.  相似文献   

17.
Canonical Monte Carlo (CMC) simulations were carried out to investigate the behavior of CO2 and N2 mixtures upon adsorption on single walled carbon nanotubes (CNTs). In the simulation, all the particle–particle interactions between CO2, N and C were modeled using Lennard-Jones (LJ) potential. To provide deep insight into the effect of pore width, temperature, pressure and bulk composition on the adsorption behavior of CO2 /N2 mixtures, five different CNTs [(6,6), (7,7), (8,8) (9,9) and (10,10) CNT] with diameters ranging from 0.807 to 1.35 nm, three temperatures (300 323 and 343 K), six pressures (0.15, 2, 4, 6, 8 and 10 MPa), and three bulk mole compositions of carbon dioxide (0.3 0.5 and 0.7) were tested. The results from all the simulation conditions investigated in this work show that CNTs preferentially adsorb carbon dioxide relative to nitrogen in a binary mixture. The results are consistent with the hypothesis that stronger interaction of one component with the nanotube surface results in a higher adsorption capacity compared to the other component. An optimized pore size of D = 8.07 nm corresponding to (6, 6) CNT, at T = 300 K and P = 0.15 MPa at a bulk mole composition of yCO2 =0.3 was identified in which carbon nanotubes demonstrate the greatest selectivity for separation of carbon dioxide relative to nitrogen. In addition, it is worth pointing out that, under similar simulation conditions, CNTs exhibit higher selectivity compared to other carbon-based materials [carbon membrane polyimide (PI) and PI/multi-wall carbon nanotubes (MWCNTs)] for CO2 adsorption. As a prototype, the selectivity of an equimolar mixture of CO2 /N2 for adsorption on (6, 6) CNTs at 300 K and 0.15 MPa reaches 9.68, which is considerably larger than that reported in carbon membrane. Therefore, it can be concluded that carbon nanotubes can act as a capable adsorbent for adsorption/desorption of CO2 in comparison with other carbon-based materials in the literature.  相似文献   

18.
Carbon nanotubes (CNTs) are nanostructures, allotropes of carbon which are made up of graphene sheets wrapped around it forming cylindrical structures. CNTs have been regarded to have interesting and attractive physical and chemical properties and have been tremendously used in genetic engineering. Understanding the role of CNTs in development of transgenic plants, review of research papers in the field was done. CNTs are classified into two categories: the single-walled and multiwalled (MWCNTs) structures. They are valuable vectors in various biomedicine fields such as Gene delivery, Drug delivery, Immunotherapy, Tissue engineering, and Biomedical imaging and also, they deliver the DNA without damaging the cells. Based on recent studies, the functionalization of CNTs when combined with some other suitable molecules can drastically subside their toxic effects. Having unique properties such as small size, larger surface area is useful in delivering DNA into mammalian cells as well. Modifications in CNTs can make nucleic acids adhere to them even more efficiently. Also, MWCNTs are crucial in delivery DNA into the cytoplasm. Based on other methods, the CNTs-DNA are a preferred choice and the inclination toward double-stranded DNA is used over single-stranded DNA in gene delivery shows effective results. The only downside of CNTs is that they are hydrophobic and are difficult to form an aqueous solution, thus limiting their applicability. This review will aid you in comprehending useful knowledge related to a general overview of topics related to CNTs.  相似文献   

19.
Prion interactions with soil may play an important role in the transmission of chronic wasting disease (CWD) and scrapie. Prions are known to bind to a wide range of soil surfaces, but the effects of adsorption solution chemistry and long-term soil binding on prion fate and transmission risk are unknown. We investigated HY TME prion protein (PrP(Sc)) adsorption to soil minerals in aqueous solutions of phosphate buffered saline (PBS), sodium chloride, calcium chloride, and deionized water using western blotting. The replication efficiency of bound prions following adsorption in these solutions was also evaluated by protein misfolding cyclic amplification (PMCA). Aging studies investigated PrP(Sc) desorption and replication efficiency up to one year following adsorption in PBS or DI water. Results indicate that adsorption solution chemistry can affect subsequent prion replication or desorption ability, especially after incubation periods of 30 d or longer. Observed effects were minor over the short-term (7 d or less). Results of long-term aging experiments demonstrate that unbound prions or prions bound to a diverse range of soil surfaces can readily replicate after one year. Our results suggest that while prion-soil interactions can vary with solution chemistry, prions bound to soil could remain a risk for transmitting prion diseases after months in the environment.  相似文献   

20.
Functionalization of carbon nanotubes (CNTs) with proteins is often a key step in their biological applications, particularly in biosensing. One popular method has used the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) to covalently conjugate proteins onto carboxylated CNTs. In this article, we critically assess the evidence presented in these conjugation studies in the literature. As CNTs have a natural affinity for diverse proteins through hydrophobic and electrostatic interactions, it is therefore important to differentiate protein covalent attachment from adsorption in the immobilization mechanism. Unfortunately, many studies of conjugating proteins onto CNTs using EDC lacked essential controls to eliminate the possibility of protein adsorption. In studies where the attachment was claimed to be covalent, discrepancies existed and the observed immobilization appeared to be due to adsorption. So far, bond analysis has been lacking to ascertain the nature of the attachment using EDC. We recommend that this approach of covalent immobilization of proteins on CNTs be re-evaluated and treated with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号