首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A selective and potent inhibitor of neuraminidases, a hydrolase that is responsible for processing sialylated glycoconjugates, is a promising drug candidate for various infective diseases. The current study demonstrates that the use of an aglycone-focused library of 2-difluoromethylphenyl α-sialosides is an effective technique to find potent and selective mechanism-based labeling reagents for neuraminidases. The focused library was constructed from a 4-azide-2-difluoromethylphenyl sialoside (2) and an alkyne-terminated compound library by a click reaction. The focused library showed different inhibition patterns for two neuraminidases, Vibrio cholerae neuraminidase (VCNA) and human neuraminidase 2 (hNeu2), and the most potent inhibitors for each neuraminidase were selected. A kinetic analysis of the selected inhibitors demonstrated that the modification of the aglycone moiety improved the K(I) value with little change in the t(1/2) value of the enzyme activity relative to the basic skeleton (2).  相似文献   

2.
3.
Toll-like receptors (TLRs) play essential roles in generating innate immune responses, and are evolutionarily conserved across species. In mammals, TLRs specifically recognize the conserved microbial structural motifs referred to as pathogen-associated molecular patterns (PAMPs). Ligand recognition by TLRs activates signaling cascades that culminate in proinflammatory cytokine production and eventual elimination of invading pathogens. Although TLRs in mammals are expressed predominantly in the immune system, certain TLRs with poorly characterized function are also found in neurons. We recently profiled TLR8 expression during mouse brain development and established its localization in neurons and axons. We uncovered a novel role for TLR8 as a suppressor of neurite outgrowth as well as an inducer of neuronal apoptosis, and found that TLR8 functions in neurons through an NF-κB-independent mechanism. These findings add a new layer of complexity for TLR signaling, and expand the realm of mammalian TLR function to the central nervous system (CNS) beyond the originally discovered immune context. Herein, we complement our earlier report with additional data, discuss their biological and mechanistic implications in CNS developmental and pathological processes, and thus further our perspective on TLR signaling and potential physiological roles in mammals.  相似文献   

4.
Currently there is pressing need to develop novel therapeutic agents for the treatment of infections by the human respiratory pathogens Pseudomonas aeruginosa and Streptococcus pneumoniae. The neuraminidases of these pathogens are important for host colonization in animal models of infection and are attractive targets for drug discovery. To aid in the development of inhibitors against these neuraminidases, we have determined the crystal structures of the P. aeruginosa enzyme NanPs and S. pneumoniae enzyme NanA at 1.6 and 1.7 Å resolution, respectively. In situ proteolysis with trypsin was essential for the crystallization of our recombinant NanA. The active site regions of the two enzymes are strikingly different. NanA contains a deep pocket that is similar to that in canonical neuraminidases, while the NanPs active site is much more open. The comparative studies suggest that NanPs may not be a classical neuraminidase, and may have distinct natural substrates and physiological functions. This work represents an important step in the development of drugs to prevent respiratory tract colonization by these two pathogens.  相似文献   

5.
Inhibitors of viral neuraminidase enzymes have been previously developed as therapeutics. Humans can express multiple forms of neuraminidase enzymes (NEU1, NEU2, NEU3, NEU4) that share a similar active site and enzymatic mechanism with their viral counterparts. Using a panel of purified human neuraminidase enzymes, we tested the inhibitory activity of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir, oseltamivir, and peramivir against each of the human isoenzymes. We find that, with the exceptions of DANA and zanamivir, these compounds show generally poor activity against the human neuraminidase enzymes. To provide insight into the interactions of viral inhibitors with human neuraminidases, we conducted molecular dynamics simulations using homology models based on coordinates reported for NEU2. Simulations revealed that an organized water is displaced by zanamivir in binding to NEU2 and NEU3 and confirmed the critical importance of engaging the binding pocket of the C7–C9 glycerol sidechain. Our results suggest that compounds designed to target the human neuraminidases should provide more selective tools for interrogating these enzymes. Furthermore, they emphasize a need for additional structural data to enable structure-based drug design in these systems.  相似文献   

6.
Terminal sialic acid residues are found in abundance in glycan chains of glycoproteins and glycolipids on the surface of all live cells forming an outer layer of the cell originally known as glycocalyx. Their presence affects the molecular properties and structure of glycoconjugates, modifying their function and interactions with other molecules. Consequently, the sialylation state of glycoproteins and glycolipids has been recognized as a critical factor modulating molecular recognitions inside the cell, between the cells, between the cells and the extracellular matrix, and between the cells and certain exogenous pathogens. Sialyltransferases that attach sialic acid residues to the glycan chains in the process of their initial synthesis were thought to be mainly responsible for the creation and maintenance of a temporal and spatial diversity of sialylated moieties. However, the growing evidence also suggests that in mammalian cells, at least equally important roles belong to sialidases/neuraminidases, which are located on the cell surface and in intracellular compartments, and may either initiate the catabolism of sialoglycoconjugates or just cleave their sialic acid residues, and thereby contribute to temporal changes in their structure and functions. The current review summarizes emerging data demonstrating that neuraminidase 1 (NEU1), well known for its lysosomal catabolic function, can be also targeted to the cell surface and assume the previously unrecognized role as a structural and functional modulator of cellular receptors.  相似文献   

7.
Matricellular proteins, such as thrombospondins (TSPs1-4), SPARC, SPARC-like1 (hevin) and tenascin C are expressed by astrocytes in the central nervous system (CNS) of rodents. The spatial and temporal expression patterns of these proteins suggest that they may be involved in important developmental processes such as cell proliferation and maturation, cell migration, axonal guidance and synapse formation. In addition, upon injury to the nervous system the expression of these proteins is upregulated, suggesting that they play a role in tissue remodeling and repair in the adult CNS. The genes encoding these proteins have been disrupted in mice. Interestingly, none of these proteins are required for survival, and furthermore, there are no evident abnormalities at the gross anatomical level in the CNS. However, detailed analyses of some of these mice in the recent years have revealed interesting CNS phenotypes. Here we will review the expression of these proteins in the CNS. We will discuss a newly described function for thrombospondins in synapse formation in the CNS in detail, and speculate whether other matricellular proteins could play similar roles in nervous system development and function.  相似文献   

8.
Tomar  Sonia  Sun  Xue-Long 《Glycoconjugate journal》2020,37(2):175-185
Glycoconjugate Journal - Sialidases or neuraminidases play important roles in various physiological and pathological processes by cleaving terminal sialic acids (Sias) (desialylation) from the...  相似文献   

9.
10.
The complete nucleotide sequence of the N1 neuraminidase gene of influenza virus A/USSR/90/77 was determined. Comparison of its predicted amino acid sequence with other N1 and N2 neuraminidases indicates that the N1 neuraminidases share most of the antigenic determinants mapped on the N2 neuraminidase but display at least one additional potentially antigenic region probably as a result of intersubtypic differences in glycosylation.  相似文献   

11.
We have got evidence that there is no antigenic relationship reflecting the structural similarity between neuraminidases synthesized by noncholera vibrios and Arthrobacter nicotianae. The cross-reactions between the enzymes and heterological antisera were not observed. Antibodies against the A. nicotianae neuraminidase inhibited the activity of the enzyme for a glycomacropeptide of milk whey and for components of the blood serum, and had no effect no the neuraminidase from noncholera vibrios. Antibodies against the neuraminidase of noncholera vibrios inhibited only the activity of the homologous enzyme. Upon gel-filtration on Sephadex G-200 the antibodies inhibiting the activity of the enzymes under study were found in the fraction of 7S-gamma-globulins.  相似文献   

12.
The viral neuraminidase enzyme is an established target for anti-influenza pharmaceuticals. However, viral neuraminidase inhibitors could have off-target effects due to interactions with native human neuraminidase enzymes. We report the activity of a series of known inhibitors of the influenza group-1 neuraminidase enzyme (N1 subtype) against recombinant forms of the human neuraminidase enzymes NEU3 and NEU4. These inhibitors were designed to take advantage of an additional enzyme pocket (known as the 150-cavity) near the catalytic site of certain viral neuraminidase subtypes (N1, N4 and N8). We find that these modified derivatives have minimal activity against the human enzymes, NEU3 and NEU4. Two compounds show moderate activity against NEU3, possibly due to alternative binding modes available to these structures. Our results reinforce that recognition of the glycerol side-chain is distinct between the viral and human NEU enzymes, and provide experimental support for improving the selectivity of viral neuraminidase inhibitors by exploiting the 150-cavity found in certain subtypes of viral neuraminidases.  相似文献   

13.
The bulk (60 to 65%) of the neuraminidase activity present in rat liver homogenates was found in the M + L (mitochondria plus lysosomes) fraction, The patterns of subcellular distribution were essentially identical whether disialogangliosides or neuramin-lactose (2 yields 3') were utilized as substrates. A new neuraminidase, which hydrolyzes sialyl trisaccharides but which does not act upon glycoproteins and gangliosides, was detected in Golgi apparatus. Unlike the other particulate neuraminidases of rat liver, the Golgi enzyme is stimulated by prior incubation and by the addition of Ca2+ or Zn2+ at 1 mM concentration. Although plasma membrane-rich fractions are often contaminated by Golgi membranes the marked differences in their enzymic properties allowed a clear distinction between the neuraminidases present in these two types of membranes.  相似文献   

14.
Artificial substrates for probing neuraminidase activity are powerful tools for studying the physiological and pathological roles of neuraminidases. Most of the substrates are α-O-linked sialosides involving hydroxyl-containing reporters for visualization, and neuraminidase-catalyzed cleavage of the sialic acid residues directly activates the reporters. However, the use of amine-containing reporters has been avoided because α-N-linked sialosides are marginal substrates for neuraminidases. To expand the applicability of reporters to amine-containing compounds, we have focused on prodrug design. Herein we describe the synthesis and enzymatic study of a model substrate involving 4-nitroaniline as an amine-containing chromogenic reporter. The substrate can respond to neuraminidase from Clostridium perfringens. Neuraminidase-mediated hydrolysis of the sialic acid moiety of the substrate initiates self-immolative elimination of the linker moiety, leading the liberation of yellow-colored reporter 4-nitroaniline. The elimination process involves generation of quinone methide intermediate, which causes to neutralize neuraminidase. The substrate, thus, works as not only a chromogenic substrate but also a suicide inactivator.  相似文献   

15.
Microtubules (MTs) are essential for neuronal morphogenesis in the developing brain. The MT cytoskeleton provides physical support to shape the fine structure of neuronal processes. MT-based motors play important roles in nucleokinesis, process formation and retraction. Regulation of MT stability downstream of extracellular cues is proposed to be critical for axonogenesis. Axons and dendrites exhibit different patterns of MT organization, underlying the divergent functions of these processes. Centrosomal positioning has drawn the attention of researchers because it is a major clue to understanding neuronal MT organization. In this review, we focus on how recent advances in live imaging have revealed the dynamics of MT organization and centrosome positioning during neural development.  相似文献   

16.
Herpes simplex virus type 1 (HSV-1) envelope proteins are posttranslationally modified by the addition of sialic acids to the termini of the glycan side chains. Although gC, gD, and gH are sialylated, it is not known whether sialic acids on these envelope proteins are functionally important. Digestion of sucrose gradient purified virions for 4 h with neuraminidases that remove both alpha2,3 and alpha2,6 linked sialic acids reduced titers by 1,000-fold. Digestion with a alpha2,3-specific neuraminidase had no effect, suggesting that alpha2,6-linked sialic acids are required for infection. Lectins specific for either alpha2,3 or alpha2,6 linkages blocked attachment and infection to the same extent. In addition, the mobility of gH, gB, and gD in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels was altered by digestion with either alpha2,3 specific neuraminidase or nonspecific neuraminidases, indicating the presence of both linkages on these proteins. The infectivity of a gC-1-null virus, DeltagC2-3, was reduced to the same extent as wild-type virus after neuraminidase digestion, and attachment was not altered. Neuraminidase digestion of virions resulted in reduced VP16 translocation to the nucleus, suggesting that the block occurred between attachment and entry. These results show for the first time that sialic acids on HSV-1 virions play an important role in infection and suggest that targeting virion sialic acids may be a valid antiviral drug development strategy.  相似文献   

17.
Neuraminidases (EC 3.2.1.18) of 1957, 1960, and 1969 influenza virus strains were isolated after proteolytic digestion of viral hemagglutinin. Each neuraminidase was recovered with a final yield of about 15% and had similar specific activities. Immunization of rabbits with the neuraminidases elicited monospecific neuraminidase antibodies, with no antibodies to viral hemagglutinin. Further evidence of purity was the existence of only a single component, about 50,000 daltons in size, when reduced neuraminidase preparations were examined by sodium dodecyl sulfate acrylamide gel electrophoresis. However, storage of neuraminidase in solution resulted in the appearance of slightly smaller degradation products. Preparations of each neuraminidase were denatured under reducing conditions, and exposed sulfhydryl residues were blocked by reaction with (14)C-iodoacetamide. After tryptic digestion, peptide maps were prepared for the neuraminidases, and the (14)C-labeled cysteinyl peptides were then identified by autoradiography. About 20 peptides were present, in agreement with the number predicted from amino acid analysis for neuraminidase subunits of only one type. The 1957 and 1960 neuraminidases exhibited a small antigenic divergence from each other, and maps of their cysteinyl peptides appeared to be identical. The 1969 neuraminidase exhibited considerable antigenic divergence from the other two neuraminidases, and maps of 1969 neuraminidase peptides revealed two major and several minor differences from the other maps. Thus, antigenic divergence between the neuraminidases of Asian and Hong Kong influenza viruses is associated with a small number of changes in the primary structure of the neuraminidase subunit.  相似文献   

18.
Chromatin-remodeling enzymes play essential roles in many biological processes, including gene expression, DNA replication and repair, and cell division. Although one such complex, SWI/SNF, has been extensively studied, new discoveries are still being made. Here, we review SWI/SNF biochemistry; highlight recent genomic and proteomic advances; and address the role of SWI/SNF in human diseases, including cancer and viral infections. These studies have greatly increased our understanding of complex nuclear processes.  相似文献   

19.
Metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, has been a target for antineoplastic therapy since these naturally occurring alkyl amines were found essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. A correlation between regulation of cell proliferation and polyamine metabolism is described. In particular, polyamine catabolism involves copper-containing amine oxidases and FAD-dependent polyamine oxidases. Several studies showed an important role of these enzymes in several developmental and disease-related processes in both animals and plants through a control on polyamine homeostasis in response to normal cellular signals, drug treatment, environmental and/or cellular stressors. The production of toxic aldehydes and reactive oxygen species, H(2)O(2) in particular, by these oxidases using extracellular and intracellular polyamines as substrates, suggests a mechanism by which the oxidases can be exploited as antineoplastic drug targets. This minireview summarizes recent advances on the physiological roles of polyamine catabolism in animals and plants in an attempt to highlight differences and similarities that may contribute to determine in detail the underlined mechanisms involved. This information could be useful in evaluating the possibility of this metabolic pathway as a target for new antiproliferative therapies in animals and stress tolerance strategies in plants.  相似文献   

20.
Han JM  Sahin M 《FEBS letters》2011,585(7):973-980
Over the past several years, the study of a hereditary tumor syndrome, tuberous sclerosis complex (TSC), has shed light on the regulation of cellular proliferation and growth. TSC is an autosomal dominant disorder that is due to inactivating mutations in TSC1 or TSC2 and characterized by benign tumors (hamartomas) involving multiple organ systems. The TSC1/2 complex has been found to play a crucial role in an evolutionarily-conserved signaling pathway that regulates cell growth: the mTORC1 pathway. This pathway promotes anabolic processes and inhibits catabolic processes in response to extracellular and intracellular factors. Findings in cancer biology have reinforced the critical role for TSC1/2 in cell growth and proliferation. In contrast to cancer cells, in the CNS, the TSC1/2 complex not only regulates cell growth/proliferation, but also orchestrates an intricate and finely tuned system that has distinctive roles under different conditions, depending on cell type, stage of development, and subcellular localization. Overall, TSC1/2 signaling in the CNS, via its multi-faceted roles, contributes to proper neural connectivity. Here, we will review the TSC signaling in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号