首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summers AE  Whelan CJ  Parsons ME 《Life sciences》2003,72(18-19):2091-2094
In the present study we have used RT-PCR to investigate nicotinic acetylcholine receptor (nAChR) subunit expression, and studied the effect of nicotine on TNFalpha-induced cytokine (IL-8) release in the epithelial cell line HT29. RNA was extracted using a commercial kit and amplified by RT-PCR. RT-PCR products were separated by electrophoresis and visualised using ethidium bromide. IL-8 release was measured by ELISA from cells activated for 6 h with TNFalpha (50 ng ml(-1)) in the absence and presence of nicotine (10(-11)-10(-6) M). HT29 cells contained mRNA for beta1, alpha4, alpha5, and alpha7 nAChR subunits. Activation of HT29 cells increased IL-8 release from undetectable amounts to 3.92 +/- 0.51 ng ml(-1) (n = 5). Nicotine significantly inhibited TNFalpha-induced IL-8 release in a concentration related manner with peak inhibition occurring at 10(-7) M (2.39 +/- 0.78 ng ml(-1), n = 5). Our data suggests that, while HT29 cells express mRNA for nAChR subunits, the only nAChR subunits that could form functional receptors and inhibit IL-8 release are alpha7.  相似文献   

2.
Receptor,theprimarysiteofcellperceivingexternalsignals,controlsthecommunicationbetweencellsandenvironment[1].Acetylcholineisanimportantneurotransmitterinvolvedinthetransmissionofsignalsatjunctionsbetweennervesandbetweennerveandmuscle.Theactionofacetylch…  相似文献   

3.
Evolution of nicotinic acetylcholine receptor subunits   总被引:7,自引:0,他引:7  
A phylogenetic tree of a gene family of nicotinic acetylcholine receptor subunits was constructed using 84 nucleotide sequences of receptor subunits from 18 different species in order to elucidate the evolutionary origin of receptor subunits. The tree constructed showed that the common ancestor of all subunits may have appeared first in the nervous system. Moreover, we suggest that the alpha 1 subunits in the muscle system originated from the common ancestor of alpha 2, alpha 3, alpha 4, alpha 5, alpha 6, and beta 3 in the nervous system, whereas the beta 1, gamma, delta, and epsilon subunits in the muscle system shared a common ancestor with the beta 2 and beta 4 subunits in the nervous system. Using the ratio (f) of the number of nonsynonymous substitutions to that of synonymous substitutions, we predicted the functional importance of subunits. We found that the alpha 1 and alpha 7 subunits had the lowest f values in the muscle and nervous systems, respectively, indicating that very strong functional constraints work on these subunits. This is consistent with the fact that the alpha 1 subunit has sites binding to the ligand, and the alpha 7-containing receptor regulates the release of the transmitter. Moreover, the window analysis of the f values showed that strong functional constraints work on the so-called M2 region in all five types of muscle subunits. Thus, the window analysis of the f values is useful for evaluating the degree of functional constraints in not only the entire gene region, but also the within-gene subregion.   相似文献   

4.
5.
Intracellular recordings were performed in voltage-clamped Xenopus oocytes upon injection with a mixture of cDNAs encoding the beta3 and mutant alpha7 (L247Talpha7) neuronal nicotinic acetylcholine receptor (nAChR) subunits. The expressed receptors maintained sensitivity to methyllycaconitine and to alpha-bungarotoxin but exhibited a functional profile strikingly different from that of the homomeric L247Talpha7 receptor. The heteromeric L247Talpha7beta3 nAChR had a lower apparent affinity and a faster rate of desensitization than L247Talpha7 nAChR, exhibited nonlinearity in the I-V relationship, and was inhibited by 5-hydroxytryptamine, much like wild type alpha7 (WTalpha7) nAChR. Single channel recordings in cell-attached mode revealed unitary events with a slope conductance of 19 picosiemens and a lifetime of 5 ms, both values being much smaller than those of the homomeric receptor channel. Upon injection with a mixture of WTalpha7 and beta3 cDNAs, clear evidence was obtained for the plasma membrane assembly of heteromeric nAChRs, although ACh could not activate these receptors. It is concluded that beta3, long believed to be an orphan subunit, readily co-assembles with other subunits to form heteromeric receptors, some of which may be negative regulators of cholinergic function.  相似文献   

6.

Background

Only 10-15% of smokers develop chronic obstructive pulmonary disease (COPD) which indicates genetic susceptibility to the disease. Recent studies suggested an association between COPD and polymorphisms in CHRNA coding subunits of nicotinic acetylcholine receptor. Herein, we performed a meta-analysis to clarify the impact of CHRNA variants on COPD.

Methods

We searched Web of Knowledge and Medline from 1990 through June 2011 for COPD gene studies reporting variants on CHRNA. Pooled odds ratios (ORs) were calculated using the major allele or genotype as reference group.

Results

Among seven reported variants in CHRNA, rs1051730 was finally analyzed with sufficient studies. Totally 3460 COPD and 11437 controls from 7 individual studies were pooled-analyzed. A-allele of rs1051730 was associated with an increased risk of COPD regardless of smoking exposure (pooled OR = 1.26, 95% CI 1.18-1.34, p < 10-5). At the genotypic level, the ORs gradually increased per A-allele (OR = 1.27 and 1.50 for GA and AA respectively, p < 10-5). Besides, AA genotype exhibited an association with reduced FEV1% predicted (mean difference 3.51%, 95%CI 0.87-6.16%, p = 0.009) and increased risk of emphysema (OR 1.93, 95%CI 1.29-2.90, p = 0.001).

Conclusions

Our findings suggest that rs1051730 in CHRNA is a susceptibility variant for COPD, in terms of both airway obstruction and parenchyma destruction.  相似文献   

7.
Nicotinic acetylcholine receptor superfamily of ligand-gated ion channels.   总被引:29,自引:0,他引:29  
R M Stroud  M P McCarthy  M Shuster 《Biochemistry》1990,29(50):11009-11023
  相似文献   

8.
9.
A locus on chromosome 15q25.1 previously implicated in nicotine, alcohol, and cocaine dependence, smoking, and lung cancer encodes subunits of the nicotinic acetylcholine receptor (nAChR) expressed in the mesolimbic system and thought to mediate substance dependence. Opioid dependence severity (ODS), nicotine dependence severity (NDS), smoking status and quantity, and the number of attempts to quit were assessed using questionnaire instruments in 505 subjects who were prescribed opioid medications for chronic pain in outpatient practice sites. Multivariate regression was used to test for genetic association of these phenotypes with 5 SNPs in the nAChR gene cluster on chromosome 15q25.1, adjusting for background variables. A coding variant in CHRNA5 (rs16969968[A]) was significantly associated with 1.4-unit higher ODS (p < 0.00017). A variant in the 3′ untranslated region of CHRNA3 (rs660652[G]) was significantly associated with 1.7-fold higher odds of lifetime smoking (p < 0.0092), 1.1-unit higher NDS (p < 0.0007), 0.7 more pack-years of cigarette smoking (p < 0.0038), and 0.8 more lifetime attempts to quit (p < 0.0084). Our data suggest an association of DNA variants in the nAChR gene cluster on chromosome 15q25.1 with ODS, as well as NDS and related smoking phenotypes. While the association of this locus with NDS and smoking phenotypes is well known, the association with ODS, a dimension of opioid substance dependence, is novel and requires verification in independent studies.  相似文献   

10.
The second beta-like subunit (SBD) is a putative structural subunit of Drosophila melanogaster nicotinic acetylcholine receptors (nAChRs). Here we have produced specific antibodies against SBD to study, which other nAChR subunits can co-assemble with SBD in receptor complexes of the Drosophila nervous system. Immunohistochemical studies in the adult optic lobe revealed that SBD has a distribution similar to that of the alpha-subunit ALS in the synaptic neuropil. The subunits ALS, D(alpha)2 and SBD can be co-purified by alpha-bungarotoxin affinity chromatography. Moreover, anti-SBD antibodies co-precipitate ALS and D(alpha)2 and, vice versa, ALS and D(alpha)2 antibodies co-immunoprecipitate SBD protein. Two-step immunoaffinity chromatography with immobilized antibodies against ALS and D(alpha)2 revealed the existence of nAChR complexes that include ALS, D(alpha)2 and SBD as integral components. Interestingly, the genes encoding these three subunits appear to be directly linked in the Drosophila genome at region 96 A of the third chromosome. In addition, SBD appears to be a component of a different receptor complex, which includes the ARD protein as an additional beta-subunit, but neither ALS nor D(alpha)2 nor the third alpha-subunit D(alpha)3. These findings suggest a considerable complexity of the Drosophila nicotinic receptor system.  相似文献   

11.
12.
During synaptogenesis at the neuromuscular junction, nicotinic acetylcholine receptors (AChRs) are organized into high-density postsynaptic clusters that are critical for efficient synaptic transmission. Rapsyn, an AChR associated cytoplasmic protein, is essential for the aggregation and immobilization of AChRs at the neuromuscular junction. Previous studies have shown that when expressed in nonmuscle cells, both assembled and unassembled AChR subunits are clustered by rapsyn, and the clustering of the alpha subunit is dependent on its major cytoplasmic loop. In the present study, we investigated the mechanism of rapsyn-induced clustering of the AChR beta, gamma, and delta subunits by testing mutant subunits for the ability to cocluster with rapsyn in transfected QT6 cells. For each subunit, deletion of the major cytoplasmic loop, between the third and fourth transmembrane domains, dramatically reduced coclustering with rapsyn. Furthermore, each major cytoplasmic loop was sufficient to mediate clustering of an unrelated transmembrane protein. The AChR subunit mutants lacking the major cytoplasmic loops could assemble into alphadelta dimers, but these were poorly clustered by rapsyn unless at least one mutant was replaced with its wild-type counterpart. These results demonstrate that the major cytoplasmic loop of each AChR subunit is both necessary and sufficient for mediating efficient clustering by rapsyn, and that only one such domain is required for rapsyn-mediated clustering of an assembly intermediate, the alphadelta dimer.  相似文献   

13.
A series of neurotoxin II (Naja naja oxiana) derivatives, each containing one p-azido-[14C]benzoyl group, have been prepared. Those labeled at Leu1, Lys15, Lys25, Lys26, or Lys46 associate specifically with the acetylcholine receptor from the Torpedo marmorata electric organs and form the crosslinks with it as a result of irradiation. Electrophoresis in polyacrylamide gel and gel chromatography revealed the contacts between the neurotoxins and alpha, beta, gamma and delta subunits of the receptor, modification of a particular subunit being governed by the photoactivable group position in the neurotoxin molecule. The differences of the two neurotoxin binding sites in the receptor were demonstrated by analysis of the photoinduced crosslinks under the conditions of one site being blocked by hexa (trifluoroacetyl) neurotoxin II. The mutual arrangement of the two bound neurotoxin molecules was established. On the basis of data obtained, two models for the acetylcholine receptor subunit topography were proposed.  相似文献   

14.
Neuronal nicotinic acetylcholine receptors (nAChRs) are made of multiple subunits with diversified functions. The nAChR 7-subunit has a property of high Ca2+ permeability and may have specific functions and localization within the plasma membrane as a signal transduction molecule. In PC-12 cells, fractionation by sucrose gradient centrifugation revealed that nAChR7 existed in low-density, cholesterol-enriched plasma membrane microdomains known as lipid rafts where flotillin also exists. In contrast, nAChR 5- and 2-subunits were located in high-density fractions, out of the lipid rafts. Type 6 adenylyl cyclase (AC6), a calcium-inhibitable isoform, was also found in lipid rafts and was coimmunoprecipitated with nAChR7. Cholesterol depletion from plasma membranes with methyl--cyclodextrin redistributed nAChR7 and AC6 diffusely within plasma membranes. Nicotine stimulation reduced forskolin-stimulated AC activity by 35%, and this inhibition was negated by either treatment with -bungarotoxin, a specific antagonist of nAChR7, or cholesterol depletion from plasma membranes. The effect of cholesterol depletion was negated by the addition of cholesterol. These data suggest that nAChR7 has a specific membrane localization relative to other nAChR subunits and that lipid rafts are necessary to localize nAChR7 with AC within plasma membranes. In addition, nAChR7 may regulate the AC activity via Ca2+ within lipid rafts. cholesterol; PC-12 cells  相似文献   

15.
Nicotinic acetylcholine receptors (AChRs) are a family of acetylcholine-gated cation channels that form the predominant excitatory neurotransmitter receptors on muscles and nerves in the peripheral nervous system. AChRs are also expressed on neurons in lower amounts throughout the central nervous system. AChRs are even being reported on unexpected cell types such as keratinocytes. Structures of these AChRs are being determined with increasing precision, but functions of some orphan subunits are just beginning to be established. Functional roles for postsynaptic AChRs in muscle are well known, but in neurons the post-, peri-, extra-, and presynaptic roles of AChRs are just being revealed. Pathogenic roles of AChRs are being discovered in many diseases involving mechanisms ranging from mutations, to autoimmune responses, to the unknown; involving cell types ranging from muscles, to neurons, to keratinocytes; and involving signs and symptoms ranging from muscle weakness to epilepsy, to neurodegenerative disease, to psychiatric disease, to nicotine addiction. Awareness of AChR involvement in some of these diseases has provoked new interests in development of therapeutic agonists for specific AChR subtypes and the use of expressed cloned AChR subunits as possible immunotherapeutic agents. Highlights of recent developments in these areas will be briefly reviewed.  相似文献   

16.
The electrostatic potentials within the pore of the nicotinic acetylcholine receptor (nAChR) were determined using lanthanide-based diffusion-enhanced fluorescence energy transfer experiments. Freely diffusing Tb3+ -chelates of varying charge constituted a set of energy transfer donors to the acceptor, crystal violet, a noncompetitive antagonist of the nAChR. Energy transfer from a neutral Tb3+ -chelate to nAChR-bound crystal violet was reduced 95% relative to the energy transfer to free crystal violet. This result indicated that crystal violet was strongly shielded from solvent when bound to the nAChR. Comparison of energy transfer from positively and negatively charged chelates indicate negative electrostatic potentials of -25 mV in the channel, measured in low ionic strength, and -10 mV measured in physiological ionic strength. Debye-Hückel analyses of potentials determined at various ionic strengths were consistent with 1-2 negative charges within 8 A of the crystal violet binding site. To complement the energy transfer experiments, the influence of pH and ionic strength on the binding of [3H]phencyclidine were determined. The ionic strength dependence of binding affinity was consistent with -3.3 charges within 8 A of the binding site, according to Debye-Hückel analysis. The pH dependence of binding had an apparent pKa of 7.2, a value indicative of a potential near -170 mV if the titratable residues are constituted of aspartates and glutamates. It is concluded that long-range potentials are small and likely contribute little to selectivity or conductance whereas close interactions are more likely to contribute to electrostatic stabilization of ions and binding of noncompetitive antagonists within the channel.  相似文献   

17.
We have used subunit-specific antibodies to identify and to characterize partially the alpha, beta, gamma, and delta subunits of rat skeletal muscle acetylcholine receptor (AChR) on immunoblots. The alpha subunit of rat muscle is a single band of 42 kDa, whereas the beta subunit has an apparent molecular mass of 48 kDa. Both alpha and beta subunits are glycosylated and contain one or more N-linked oligosaccharide chains that are sensitive to endoglycosidase H digestion. The gamma and delta subunits, on the other hand, each appear as doublets on immunoblots, with apparent molecular masses of 52 kDa (gamma), 48 kDa (gamma') and 58 kDa (delta), 53 kDa (delta'), respectively. In each case, the two bands are structurally related and the lower band is probably the partial degradation product of the corresponding upper band. Each of the four gamma and delta polypeptides is N-glycosylated and contains both endoglycosidase H-sensitive and endoglycosidase H-resistant oligosaccharides. When the AChRs purified from embryonic, neonatal, adult, and denervated adult rat muscles were compared, no differences in the mobilities of alpha, beta, or delta subunits on sodium dodecyl sulfate gels were detected among them, either with or without endoglycosidase treatment. The gamma subunits, which were present in AChRs purified from neonatal, embryonic, or denervated rat muscles, were also identical; no gamma subunit was detected, however, in AChRs of normal adult rat muscle.  相似文献   

18.
Wenz JJ  Barrantes FJ 《Biochemistry》2005,44(1):398-410
Purified nicotinic acetylcholine receptor (AChR) protein was reconstituted into synthetic lipid membranes having known effects on receptor function in the presence and absence of cholesterol (Chol). The phase behavior of a lipid system (DPPC/DOPC) possessing a known lipid phase profile and favoring nonfunctional, desensitized AChR was compared with that of a lipid system (POPA/POPC) containing the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the AChR. Fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and AChR intrinsic fluorescence by a nitroxide spin-labeled phospholipid showed that the AChR diminishes the degree of DPH quenching and promotes DPPC lateral segregation into an ordered lipid domain, an effect that was potentiated by Chol. Fluorescence anisotropy of the probe DPH increased in the presence of AChR or Chol and also made apparent shifts to higher values in the transition temperature of the lipid system in the presence of Chol and/or AChR. The values were highest when both Chol and AChR were present, further reinforcing the view that their effect on lipid segregation is additive. These results can be accounted for by the increase in the size of quencher-free, ordered lipid domains induced by AChR and/or Chol. Pyrene phosphatidylcholine (PyPC) excimer (E) formation was strongly reduced owing to the restricted diffusion of the probe induced by the AChR protein. The analysis of Forster energy transfer (FRET) from the protein to DPH further indicates that AChR partitions preferentially into these ordered lipid microdomains, enriched in saturated lipid (DPPC or POPA), which segregate from liquid phase-enriched DOPC or POPC domains. Taken together, the results suggest that the AChR organizes its immediate microenvironment in the form of microdomains with higher lateral packing density and rigidity. The relative size of such microdomains depends not only on the phospholipid polar headgroup and fatty acyl chain saturation but also on AChR protein-lipid interactions. Additional evidence suggests a possible competition between Chol and POPA for the same binding sites on the AChR protein.  相似文献   

19.

Background  

The precise composition of the human sperm plasma membrane, the molecular interactions that define domain specific functions, and the regulation of membrane associated proteins during the capacitation process, still remain to be fully understood. Here, we investigated the repertoire of calcium-regulated proteins associated with the human sperm plasma membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号